Metastable Defect Distributions in CIGS Solar Cells and Their Impact on Device Efficiency

2007 ◽  
Vol 1012 ◽  
Author(s):  
Malgorzata Igalson

AbstractMetastabilities in the electrical characteristics of CIGS devices are commonly observed phenomena originating from persistent changes of shallow and deep levels distributions within the absorber. We examine characteristic changes induced by voltage bias and light together with their relaxation behavior and interpret them as the consequences of a negative-U type of centers predicted by theoretical calculations of Lany and Zunger. It is shown how the properties of these centers justify a model of p+ layer explaining specific features of light and dark current-voltage characteristics. The discussion showing the impact of various charge distributions on carrier transport is presented. The arguments are provided, that centers responsible for metastable effects are also to blame for majority of photovoltaic losses exhibited in various devices.

1994 ◽  
Vol 361 ◽  
Author(s):  
Chang Jung Kim ◽  
Dae Sung Yoon ◽  
Joon Sung Lee ◽  
Chaun Gi Choi ◽  
Won Jong Lee ◽  
...  

ABSTRACTThe (100), (111) and randomly oriented PZT thin films were fabricated on Pt/Ti/Coming 7059 glass using sol-gel method. The thin films having different orientation were fabricated by different drying conditions for pyrolysis. The preferred orientations of the PZT thin films were observed using XRD, rocking curves, and pole figures. The microstructures were investigated using SEM. The hysteresis loops and capacitance-voltage characteristics of the films were investigated using a standardized ferroelectric test system. The dielectric constant and current-voltage characteristics of the films were investigated using an impedance analyzer and pA meter, respectively. The films oriented in a particular direction showed superior electrical characteristics to the randomly oriented films.


2019 ◽  
Vol 970 ◽  
pp. 75-81
Author(s):  
Alexey Zavgorodniy ◽  
Aitbek Aimukhanov ◽  
Assylbek Zeinidenov ◽  
Galina Vavilova

The role of spin states in the process of charge carrier transport in copper phthalocyanine (CuPc) nanowires has been established. According to the data obtained, CuPc nanowires are in the η-phase. The current-voltage characteristics (IVC) of a photosensitive cell based on CuPc nanowires in a magnetic field are investigated. As a result of experiments, it was found that applying an external magnetic field, the spins of two positively charged polarons are oriented in one direction. The channel of formation of the bipolaron is blocked. As a result, a decrease in the short-circuit current of the photosensitive cell is observed by more than 61%.


2020 ◽  
Vol 118 ◽  
pp. 105219
Author(s):  
Dariusz Smoczyński ◽  
Krzysztof Czuba ◽  
Ewa Papis-Polakowska ◽  
Paweł Kozłowski ◽  
Jacek Ratajczak ◽  
...  

2014 ◽  
Vol 941-944 ◽  
pp. 547-550
Author(s):  
Chao Fang ◽  
Liang Yan Chen

A analytic method for the calculation of the electrical characteristics of semiconducting ceramics is suggested. This paper put forward the concept of effective carrier concentration. Electrical characteristics under extra electric field have been calculated by the method of tilted energy band. The non-linear current-voltage characteristics with different grain sizes has been obtained. The results pointed out that the current-voltage characteristics divide into three regions: Linear region before breakdown field, nonlinear region near breakdown field and upturn region after breakdown field; The grain boundary barrier leads to the strong non-linear characteristics, which has nothing to do with the grain size. With the grain size decreasing, the breakdown field increases. The results are compared with experimental data.


2001 ◽  
Vol 674 ◽  
Author(s):  
Robert Gunnarsson ◽  
Anatoli Kadigrobov ◽  
Zdravko Ivanov

ABSTRACTWe have been able to deduce a temperature dependence of the built-in potential in La2/3Sr1/3MnO3 grain boundary junctions. This has been performed by trimming a single grain boundary down to 1μm width with a focused ion-beam. We can thereby see the impact of single domain walls on the magnetoresistance and the current-voltage characteristics. We have also demonstrated the effect of averaging as we increased the number of junctions.


2013 ◽  
Vol 591 ◽  
pp. 212-215 ◽  
Author(s):  
Chong Qing Huang ◽  
J. Liu ◽  
M. Chen ◽  
X.A. Mei

The electrical properties of Yb-doped bismuth titanate,Bi4-xYbxTi3O12 (BYbT) ceramics prepared by a conventional electroceramic technique were investigated. XRD analyses revealed Bi-layered perovskite structure in all samples. SEM micrographs showed randomly oriented and plate-like morphology. For the samples with x=0.25 and 1.0 the current-voltage characteristics exhibited negative differential resistance behaviors and their P-V hysteresis loops were characterized by large leakage current, whereas for the samples with x=0.5 and 0.75 the current-voltage characteristics showed simple ohmic behaviors and their P-E hysteresis loops were the saturated and undistorted hysteresis loops. The remanent polarization ( Pr ) and coercive field (Ec) of the BYbT ceramic with x=0.75 were above 16μC/cm2 and 75KV/cm , respectively.


Author(s):  
А.Г. Тандоев ◽  
Т.Т. Мнацаканов ◽  
С.Н. Юрков

It is shown that at high current densities the carrier transport in base layer of Schottky diodes in addition to commonly accepted diffusive and drift currents is defined by recently discovered diffusion stimulated by quasi-neutral drift (DSQD). The influence of this recently discovered component of current on current-voltage characteristics of Schottky diode has been investigated. It was shown that in case if the ratio of base width $W$ to ambipolar diffusive length $L$ is higher than 1 ($W/L>1$) a part with negative differential resistance appears on the current-voltage characteristics of Schottky diode. The results of analytical investigation are confirmed by numerical calculation using INVESTIGATION program.


1991 ◽  
Vol 256 ◽  
Author(s):  
Y. J. Hsu ◽  
L. K. Samanta ◽  
K. C. Wang ◽  
P. C. Chen ◽  
H. L. Hwang

ABSTRACTWe have made studies on the TRANSVERSE transport properties of the porous Si made from a novel P/N junction structure. The structures of porous Si were examined for various electrochemical etching conditions and they were correlated with the electrical data. The junciton was fabricated by shallow diffusion, with porous Si formed perpendicular to the junction and between two indium ohmic contacts. This structure confines currents to the direction parallel to the surface. Distinct feature on I–V curves have been observed, including sudden rise of currents and the existence of negative differential resistances (NDR). The characteristics appeared stable and depended on the polarity of bias. Suggestions are made that the porous Si could be composed of microcrystals, and feasibility of carrier transport through quantum boxes responsible for the electrical behaviors are discussed.


2010 ◽  
Vol 2 (5) ◽  
pp. 453-456 ◽  
Author(s):  
Davide Mencarelli ◽  
Luca Pierantoni ◽  
Andrea D. Donato ◽  
Tullio Rozzi

We present detailed results of the self-consistent analysis of carbon nanotube (CNT) field-effect transistors (FET), previously extended by us to the case of multi-walled/multi-band coherent carrier transport. The contribution to charge transport, due to different walls and sub-bands of a multi-walled CNT, is shown to be generally non-negligible. In order to prove the effectiveness of our simulation tool, we provide interesting examples about current–voltage characteristics of four-walled semi-conducting nanotubes, including details of numerical convergence and contribution of sub-bands to the calculation.


2011 ◽  
Vol 378-379 ◽  
pp. 606-609 ◽  
Author(s):  
Itsara Srithanachai ◽  
Surada Ueamanapong ◽  
Amporn Poyai ◽  
Surasak Niemcharoen

This paper investigates the effect of soft X-ray irradiation various energy and times on P-N junction diodes. X-ray energy irradiated on P-N junction diode with 55 and 70 keV with various time in the range 5-50 sec. After irradiations were study on the current-voltage (I-V) characteristics and capacitance-voltage (C-V) characteristics. Leakages current after irradiated by X-ray are not change, while forward current are increase about 3 orders. The change of current-voltage characteristics can analyze by many parameter such as carrier lifetime and series resistance. Capacitance-voltage characteristics after irradiation are not change. The results show that soft X-ray technique can be improving performance of the P-N junction diodes. These techniques are importance to use for improving device performance in industry work.


Sign in / Sign up

Export Citation Format

Share Document