Current–Voltage Characteristics of Porous Silicon Made from A P/N Junction Structure

1991 ◽  
Vol 256 ◽  
Author(s):  
Y. J. Hsu ◽  
L. K. Samanta ◽  
K. C. Wang ◽  
P. C. Chen ◽  
H. L. Hwang

ABSTRACTWe have made studies on the TRANSVERSE transport properties of the porous Si made from a novel P/N junction structure. The structures of porous Si were examined for various electrochemical etching conditions and they were correlated with the electrical data. The junciton was fabricated by shallow diffusion, with porous Si formed perpendicular to the junction and between two indium ohmic contacts. This structure confines currents to the direction parallel to the surface. Distinct feature on I–V curves have been observed, including sudden rise of currents and the existence of negative differential resistances (NDR). The characteristics appeared stable and depended on the polarity of bias. Suggestions are made that the porous Si could be composed of microcrystals, and feasibility of carrier transport through quantum boxes responsible for the electrical behaviors are discussed.

1992 ◽  
Vol 283 ◽  
Author(s):  
C. C. Yeh ◽  
Klaus Y.J. Hsu ◽  
P. C. Chen ◽  
H. L. Hwang

ABSTRACTWe utilized the conventional planar fabrication technique and the electrochemical etching method to prepare porous Si layers in the p-type region of a p/n junction, which could make the study on the transverse transport property of this material possible. The junctions were fabricated by low energy ion-implantation, with porous Si formed perpendicular to the junction and between two metal contacts. This structure confines currents to the direction parallel to the surface. Distinct features on current-voltage (I-V) curves has been observed.


1985 ◽  
Vol 132 (2) ◽  
pp. 346-349 ◽  
Author(s):  
Nobuyoshi Koshida ◽  
Masahiro Nagasu ◽  
Takashi Sakusabe ◽  
Yuji Kiuchi

1994 ◽  
Vol 339 ◽  
Author(s):  
J. R. Zeidler ◽  
C. A. Hewett ◽  
R. Nguyen

ABSTRACTAn overview of enabling materials technologies required for fabrication of electronic devices on diamond is presented. Emphasis is placed on electronic doping of diamond by boron ion implantation. Van der Pauw resistivity and Hall Effect measurements were used to determine the net carrier concentration, carrier mobility and resistivity of natural and synthetic diamonds implanted under various conditions. The measured results for a range of implantation conditions and post-annealing temperatures are discussed in the context cf a model developed by J.F. Prins1. The requirements placed on ohmic contacts to diamond, and a process for fabricating ohmic contacts, is discussed briefly. Finally, current-voltage characteristics of a simple MISFET fabricated on ion implanted natural diamond are presented and analyzed. 1J.F. Prins, Physical Review B, 38 (1988) 5576.


2007 ◽  
Vol 1012 ◽  
Author(s):  
Malgorzata Igalson

AbstractMetastabilities in the electrical characteristics of CIGS devices are commonly observed phenomena originating from persistent changes of shallow and deep levels distributions within the absorber. We examine characteristic changes induced by voltage bias and light together with their relaxation behavior and interpret them as the consequences of a negative-U type of centers predicted by theoretical calculations of Lany and Zunger. It is shown how the properties of these centers justify a model of p+ layer explaining specific features of light and dark current-voltage characteristics. The discussion showing the impact of various charge distributions on carrier transport is presented. The arguments are provided, that centers responsible for metastable effects are also to blame for majority of photovoltaic losses exhibited in various devices.


2019 ◽  
Vol 970 ◽  
pp. 75-81
Author(s):  
Alexey Zavgorodniy ◽  
Aitbek Aimukhanov ◽  
Assylbek Zeinidenov ◽  
Galina Vavilova

The role of spin states in the process of charge carrier transport in copper phthalocyanine (CuPc) nanowires has been established. According to the data obtained, CuPc nanowires are in the η-phase. The current-voltage characteristics (IVC) of a photosensitive cell based on CuPc nanowires in a magnetic field are investigated. As a result of experiments, it was found that applying an external magnetic field, the spins of two positively charged polarons are oriented in one direction. The channel of formation of the bipolaron is blocked. As a result, a decrease in the short-circuit current of the photosensitive cell is observed by more than 61%.


1992 ◽  
Vol 281 ◽  
Author(s):  
C. Piskoti ◽  
B. Mykolajenko ◽  
M. Vaziri

ABSTRACTTo study the formation of ohmic contacts, several metals have been deposited on p-types ZnTe and ZnSe epitaxial layers. The metals were deposited on the layers either by simple evaporation or by electroplating. The current-voltage characteristics associated with each metal contact were measured. The preliminary results of these measurements indicate that electroplating is a better technique for making ohmic contact to these layers.


Author(s):  
А.Г. Тандоев ◽  
Т.Т. Мнацаканов ◽  
С.Н. Юрков

It is shown that at high current densities the carrier transport in base layer of Schottky diodes in addition to commonly accepted diffusive and drift currents is defined by recently discovered diffusion stimulated by quasi-neutral drift (DSQD). The influence of this recently discovered component of current on current-voltage characteristics of Schottky diode has been investigated. It was shown that in case if the ratio of base width $W$ to ambipolar diffusive length $L$ is higher than 1 ($W/L>1$) a part with negative differential resistance appears on the current-voltage characteristics of Schottky diode. The results of analytical investigation are confirmed by numerical calculation using INVESTIGATION program.


1981 ◽  
Vol 4 ◽  
Author(s):  
John M. Woodcock

ABSTRACTA Q-switched ruby laser has been used to anneal gallium arsenide which has either been implanted with a donor or coated with a thin layer of material containing the donor. Silicon nitride (∼500Å), germanium (∼50Å), tin (∼50Å) and silicon (∼500Å) have been used and in all cases laser annealing produces n-type doping levels in excess of 1019cm−3. Non alloyed ohmic contacts have been made on these heavily doped layers with specific contact resistances as low as 1.4 × 10−6Ω cm2. These contacts have been used in the fabrication of fine geometry coplanar mixer diodes. Ideality factors of 1.1 have been measured from the d.c. current voltage characteristics and diodes with a total capacitance of O.03pF have series resistances below 10 ohms. Matched pairs of these devices have given a 4.8dB conversion loss at 35GHz in a fin line balanced mixer.


2010 ◽  
Vol 2 (5) ◽  
pp. 453-456 ◽  
Author(s):  
Davide Mencarelli ◽  
Luca Pierantoni ◽  
Andrea D. Donato ◽  
Tullio Rozzi

We present detailed results of the self-consistent analysis of carbon nanotube (CNT) field-effect transistors (FET), previously extended by us to the case of multi-walled/multi-band coherent carrier transport. The contribution to charge transport, due to different walls and sub-bands of a multi-walled CNT, is shown to be generally non-negligible. In order to prove the effectiveness of our simulation tool, we provide interesting examples about current–voltage characteristics of four-walled semi-conducting nanotubes, including details of numerical convergence and contribution of sub-bands to the calculation.


2011 ◽  
Vol 1305 ◽  
Author(s):  
K. Sawano ◽  
Y. Hoshi ◽  
K. Kasahara ◽  
K. Yamane ◽  
K. Hamaya ◽  
...  

ABSTRACTWe demonstrate low-resistivity Ohmic contacts for n-Ge with ultra-shallow junction. Using the impurity δ-doping techniques with Ge homoepitaxy on Ge(111) below 400 ºC, we can achieve a very abrupt doping profile within a nanometer-scale width. By introducing the δ-doping to atomically controlled metal/Ge contacts, the current-voltage characteristics clearly show Ohmic conductions owing to the effective tunneling through the Schottky barrier. This approach is promising for a formation technology of ultra-shallow source/drain contacts for scaled Ge devices.


Sign in / Sign up

Export Citation Format

Share Document