Microwave-assisted synthesis of c-axis oriented ZnO nanorods on a glass substrate coated with ZnO film

2007 ◽  
Vol 1035 ◽  
Author(s):  
Ken-ichi Ogata ◽  
Kazuto Koike ◽  
Shigehiko Sasa ◽  
Masataka Inoue ◽  
Mitsuaki Yano

AbstractZnO nanorods synthesis on a glass substrate coated with ZnO film was performed by means of microwave-assisted heating. Nanorod structure was dependent on the underlying ZnO films; slightly tilted nanorods about 800nm diameter were synthesized on an as-sputtered ZnO film while highly c-axis oriented ones about 100nm diameter were developed on the ZnO film after annealing. Photoluminescence spectra of the ZnO nanorods at 6K showed a badedge excitonic emission with comparable intensity to a visible defect related emission, suggesting the existence of many radiative defects which would be originated from insufficient quality of the underlying ZnO layer. Pattered photoresist layer can successfully be utilized for synthesis of the ZnO nanolods in selective area.

2016 ◽  
Vol 12 (6) ◽  
pp. 4127-4133
Author(s):  
Nazmul Kayes ◽  
Jalil Miah ◽  
Md. Obaidullah ◽  
Akter Hossain ◽  
Mufazzal Hossain

Photodegradation of textile dyes in the presence of an aqueous suspension of semiconductor oxides has been of growing interest. Although this method of destruction of dyes is efficient, the main obstacle of applying this technique in the industry is the time and cost involving separation of oxides from an aqueous suspension. In this research, an attempted was made to develop ZnO films on a glass substrate by simple immobilization method for the adsorption and photodegradation of a typical dye, Remazol Red R (RRR) from aqueous solution. Adsorption and photodegradation of  RRR were performed in the presence of glass supported ZnO film. Photodegradation of the dye was carried out by varying different parameters such as the catalyst dosage, initial concentrations of RRR, and light sources. The percentage of adsorption as well as photodegradation increased with the amount of ZnO, reaches a maximum and then decreased. Maximum degradation has been found under solar light irradiation as compared to UV-light irradiation. Removal efficiency was also found to be influenced by the pre-sonication of ZnO suspension.


2011 ◽  
Vol 239-242 ◽  
pp. 777-780
Author(s):  
Ting Zhi Liu ◽  
Shu Wang Duo ◽  
C Y Hu ◽  
C B Li

ZnO films were deposited on nanostructured Al (n-Al) /glass substrate by RF magnetron sputtering. The results shows that the relation (I (002) /I (100) ≈ I annealed (002)/I annealed (100) ≈1.1) shows the rough n-Al surface is suitable for the growth of a-axis orientation. Meanwhile, the influences of substrate roughness, crystallinity and (101) plane of ZnO film deposited on n-Al layer have been discussed. XPS implies more oxygen atoms are bound to Aluminum atoms, which result in the increase of high metallic Zn in the film.


2011 ◽  
Vol 418-420 ◽  
pp. 293-296
Author(s):  
Qiu Yun Fu ◽  
Peng Cheng Yi ◽  
Dong Xiang Zhou ◽  
Wei Luo ◽  
Jian Feng Deng

Abstract. In this article, nano-ZnO films were deposited on SiO2/Si (100) substrates by RF (radio frequency) magnetron sputtering using high purity (99.99%) ZnO target. The effects of deposition time and annealing temperature have been investigated. XRD (X-ray diffraction) and FSEM (Field Emission Scanning Electron Microscopy) were employed to characterize the quality of the films. The results show that the ZnO film with thickness of 600nm annealed at 900°C has higher quality of both C-axis orientation and crystallization. And for the Zone film with thickness of 300nm annealed at 850°C, the quality of both C-axis orientation and crystallization is higher than that annealed at 900°C and 950°C.


Nanoscale ◽  
2012 ◽  
Vol 4 (23) ◽  
pp. 7435 ◽  
Author(s):  
Mojtaba Mirhosseini Moghaddam ◽  
Mostafa Baghbanzadeh ◽  
Andreas Keilbach ◽  
C. Oliver Kappe

2013 ◽  
Vol 1494 ◽  
pp. 91-97
Author(s):  
Tien-Chai Lin ◽  
Wen-Chang Huang ◽  
Chin-Hung Liu ◽  
Shang-Chou Chang

ABSTRACTThermal effects on the crystal structure, electrical and optical characteristics of the Al and F co-doped ZnO films (ZnO:AlF3) are discussed in the paper. The ZnO:AlF3 thin films are prepared by RF sputtering with a constant power (ZnO/AlF3=100W/75W) toward the ZnO and AlF3 targets. The substrate temperature varied from room temperature to 250 °C with a step of 50 °C during thin film deposition. The crystalline quality of the ZnO:AlF3 film improved as the substrate temperature increased, with a corresponding increase in grain size. The improvement of the film quality leads to a higher electron mobility, with electron mobility of 0.85 cm2/V-s for the film deposited at the substrate temperature of 250 °C. The doping effect of fluorine in ZnO, and hence carrier concentration, was reduced at high temperature due to the vaporization of fluorine. This led to a reduction of carrier concentration with increase of temperature from 25 to 200°C. The corresponding resistivity increased from 3.60×10−2 to 6.0×10−2 Ω-cm. While for a further increase in substrate temperature, the doping of Al to the ZnO film was increased and resulted in an increase in carrier concentration.


2011 ◽  
Vol 184 (2) ◽  
pp. 391-400 ◽  
Author(s):  
Mukta V. Limaye ◽  
Shashi B. Singh ◽  
Raja Das ◽  
Pankaj Poddar ◽  
Sulabha K. Kulkarni

2012 ◽  
Vol 271-272 ◽  
pp. 301-304
Author(s):  
Feng Xu ◽  
Sheng Nan Sun ◽  
Yi Xin Wang ◽  
Jia Jia Cao ◽  
Zi Han Wang ◽  
...  

ZnO film and Cu2S/ZnO bilays on the glass substrate were fabricated by RF magnetron sputtering. We carried out the experiments by adjusting the thickness of Cu2S on ZnO layer. The performance of Cu2S/ZnO on the transparency, conduction and photocatalysis were investigated. The photocatalytic experiments showed a good photocatalytic activity for photodegradation of methyl orange.


2005 ◽  
Vol 20 (9) ◽  
pp. 2578-2582 ◽  
Author(s):  
Yukari Ishikawa ◽  
Mitsuhiro Okamoto ◽  
Shigeru Tanaka ◽  
Dai Nezaki ◽  
N. Shibata

Intensity variation of 1.5 μm light emission at room temperature from Er-doped epitaxial and polycrystal ZnO films depending on annealing temperature (773–1373 K) was studied. As-grown Er-doped epitaxial ZnO film emitted 1.5 μm photoluminescence(PL) higher than as-grown Er-doped polycrystal ZnO. It was found that the annealing in air increases PL intensity and the maximum PL intensity was obtained by annealing at optimal temperature (1073 K). Spectrum shape and intensity of 1.5 μm PL of Er-doped epitaxial ZnO after annealing at 1073 K resembled those of Er-doped polycrystal ZnO after annealing at 1073 K. X-ray diffraction measurement demonstrated that annealing improves crystal quality of Er-doped ZnO film. We assumed that the process of 1.5 μm light emission is dependent on local area placement of Zn and O atoms around Er as well as crystal quality of ZnO.


RSC Advances ◽  
2016 ◽  
Vol 6 (1) ◽  
pp. 527-533 ◽  
Author(s):  
Archita Bhattacharjee ◽  
M. Ahmaruzzaman

This article illustrates a facile microwave assisted synthesis of 1D ZnO nanorods using lauric acid.


2021 ◽  
Vol 6 (2) ◽  
pp. 69-73
Author(s):  
Ari Sulistyo Rini ◽  
Averin Nabilla ◽  
Yolanda Rati

This study aims to investigate the physical characteristics and photocatalyst activity of biosynthesized ZnO with pineapple (Ananas comosus) peel extract under microwave irradiation. The ZnO powder was prepared in two different concentrations of zinc nitrate hexahydrate (ZNH) at 200mM (Z-200) and 500 mM (Z-500). The optical, structural, and morphological properties of ZnO were analyzed using UV-Vis spectroscopy, X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM), respectively. The UV-Vis absorption spectrum showed a wide absorbance peak of ZnO at the wavelength of 300-360 nm with a bandgap energy of 3.22 and 3.25 eV. The XRD result confirmed the wurtzite structure of ZnO with high crystallinity. SEM morphology showed spherical particles with an average particle size of 190-220 nm. For photocatalytic application, ZnO film was fabricated via the doctor blade method from microwave-assisted biosynthesized ZnO powder. ZnO films were then applied under UV-irradiation to examine the photocatalytic degradation of methylene blue. It was found that the catalytic behavior of ZnO film was affected by the starting ZNH concentration with maximum effectiveness of 46% degradation after 2 h.


Sign in / Sign up

Export Citation Format

Share Document