Potential of Hot Wire CVD for Active Matrix TFT Manufacturing

2009 ◽  
Vol 1153 ◽  
Author(s):  
Ruud E.I. Schropp ◽  
Zomer Silvester Houweling ◽  
Vasco Verlaan

AbstractHot Wire Chemical Vapor Deposition (HWCVD) is a fast deposition technique with high potential for homogeneous deposition of thin films on large area panels or on continuously moving substrates in an in-line manufacturing system. As there are no high-frequency electromagnetic fields, scaling up is not hampered by finite wavelength effects or the requirement to avoid inhomogeneous electrical fields. Since 1996 we have been investigating the application of the HWCVD process for thin film transistor manufacturing. It already appeared then that these Thin Film Transistors (TFTs) were electronically far more stable than those with Plasma Enhanced (PE) CVD amorphous silicon. Recently, we demonstrated that very compact SiNx layers can be deposited at high deposition rates, up to 7 nm/s. The utilization of source gases in HWCVD of a-Si3N4 films deposited at 3 nm/s is 75 % and 7 % for SiH4 and NH3, respectively. Thin films of stoichiometric a-Si3N4 deposited at this rate have a high mass-density of 3.0 g/cm3. The dielectric properties have been evaluated further in order to establish their suitability for incorporation in TFTs. Now that all TFT layers, namely, the SiNx insulator, the a-Si:H or μc Si:H layers, and the n-type doped thin film silicon can easily be manufactured by HWCVD, the prospect of “all HWCVD” TFTs for active matrix production is within reach. We tested the 3 nm/s SiNx material combined with our protocrystalline Si:H layers deposited at 1 nm/s in ‘all HW’ TFTs. Results show that the TFTs are state of the art with a field-effect mobility of 0.4 cm2/Vs. In order to assess the feasibility of large area deposition we are investigating in-line HWCVD for displays and solar cells.

2013 ◽  
Vol 284-287 ◽  
pp. 225-229 ◽  
Author(s):  
Chao Nan Chen ◽  
Jung Jie Huang ◽  
Gwo Mei Wu ◽  
How Wen Chien

Silicon nitride (SiNx), an important material used as a dielectric layer and passivation layer in thin film transistor liquid crystal display (TFT LCD) was patterned by a non-lithographic process. SiNx was deposited by plasma enhanced chemical vapor deposition (PECVD) on glass substrate. Laser photoablation can effectively pattern 5 µm diameter with 200 nm depth hole in SiNx thin films with laser photoablation. The threshold remove fluence is 1350 mJ/cm2 with 1 laser irradiation shot. The contact-hole taper angle as a function of the laser irradiation shot number. The taper angle increased with increasing the laser irradiation shot number. The contact-hole taper angle etched profile was successfully controlled by vary the laser irradiation shot number.


1994 ◽  
Vol 345 ◽  
Author(s):  
Kola R Olasupo ◽  
Professor M. K. Hatalis

AbstractThe polysilicon thin film transistor has been actively studied for the large area display applications like active matrix liquid crystal displays and for load cell in static random access memories. Due to low effective carrier mobility in polysilicon, the circuit speed is limited. Since the circuit delay time is directly proportional to the square of the channel length, short channel TFTs will be advantageous for high speed applications. In this work, we have studied the current voltage characteristics of an inverted sub-micron P-channel polysilicon thin-film transistor with self-aligned LDD structure to obtain a well-controlled channel and drain offset lengths. The particular features we examined are the leakage current and mobility. The leakage current and the ON current were found to be in the picoamp and micro-amp range respectively for devices having channel length in the range of 1.0μm to 0.35μm. Even very small devices having L&W = 0.35μm × 0.35μm exhibited characteristics similar to wider devices. The on/off current ratio was in the order of 105 before hydrogenation.


The Thin Film Transistor (TFT) is the key active components of emerging large area and flexible microelectronics (LAFM) which includes a flexible display, robotics skin, sensor & disposable electronics. Different semiconducting or organic conducting materials could be used in the fabrication of TFTs. The material used for the active layer also influences the performance of the TFT uniquely[1]. Silicon based thin film transistors have made possible the development of the active-matrix liquid crystal display within cell-touch technology [2,3,4]. Modern-day simulation software does not support the older SPICE code models, and rather rely on the new drag and drop concepts. The TFT(Thin Film Transistor) Model device wasn't readily available on the LT-Spice Tool which was simulated and the circuit level simulation for basic gates using the TFT was carried out successfully. The model symbol shall be useful for analysis and simulation of the TFT based circuits which require continuous behavioral study and analysis. For a device to be simulated that way, a “.lib” file containing a symbol of the device is necessary. This paper focuses on circuit-level simulation of user-defined device parameters from reported experimental data.


1996 ◽  
Vol 452 ◽  
Author(s):  
K. Tanaka

AbstractNanocrystalline/microcrystalline thin films prepared at relatively low temperatures by plasma-enhanced chemical vapor deposition (PECVD), in particular hydrogenated microcrystalline Si films (μc-Si:H), have attracted an increasing attention not only as potential materials for thin film solar cells, but also as active layers in thin film transistor arrays for flat panel displays. This paper reviews recent progress in the investigation of these materials; preparation methods, structural and optical properties, and electronic transports. Emphasis is placed on the understanding of the growth mechanism of μc-Si:H films as well as the microscopic characterization of the film structure.


Author(s):  
P. Lu ◽  
W. Huang ◽  
C.S. Chern ◽  
Y.Q. Li ◽  
J. Zhao ◽  
...  

The YBa2Cu3O7-x thin films formed by metalorganic chemical vapor deposition(MOCVD) have been reported to have excellent superconducting properties including a sharp zero resistance transition temperature (Tc) of 89 K and a high critical current density of 2.3x106 A/cm2 or higher. The origin of the high critical current in the thin film compared to bulk materials is attributed to its structural properties such as orientation, grain boundaries and defects on the scale of the coherent length. In this report, we present microstructural aspects of the thin films deposited on the (100) LaAlO3 substrate, which process the highest critical current density.Details of the thin film growth process have been reported elsewhere. The thin films were examined in both planar and cross-section view by electron microscopy. TEM sample preparation was carried out using conventional grinding, dimpling and ion milling techniques. Special care was taken to avoid exposure of the thin films to water during the preparation processes.


2018 ◽  
Vol 10 (3) ◽  
pp. 03001-1-03001-6 ◽  
Author(s):  
Bharat Gabhale ◽  
◽  
Ashok Jadhawar ◽  
Ajinkya Bhorde ◽  
Shruthi Nair ◽  
...  

1996 ◽  
Vol 424 ◽  
Author(s):  
R. E. I. Schropp ◽  
K. F. Feenstra ◽  
C. H. M. Van Der Werf ◽  
J. Holleman ◽  
H. Meiling

AbstractWe present the first thin film transistors (TFTs) incorporating a low hydrogen content (5 - 9 at.-%) amorphous silicon (a-Si:H) layer deposited by the Hot-Wire Chemical Vapor Deposition (HWCVD) technique. This demonstrates the possibility of utilizing this material in devices. The deposition rate by Hot-Wire CVD is an order of magnitude higher than by Plasma Enhanced CVD. The switching ratio for TFTs based on HWCVD a-Si:H is better than 5 orders of magnitude. The field-effect mobility as determined from the saturation regime of the transfer characteristics is still quite poor. The interface with the gate dielectric needs further optimization. Current crowding effects, however, could be completely eliminated by a H2 plasma treatment of the HW-deposited intrinsic layer. In contrast to the PECVD reference device, the HWCVD device appears to be almost unsensitive to bias voltage stressing. This shows that HW-deposited material might be an approach to much more stable devices.


ACS Nano ◽  
2011 ◽  
Vol 5 (9) ◽  
pp. 7198-7204 ◽  
Author(s):  
Michael E. Ramón ◽  
Aparna Gupta ◽  
Chris Corbet ◽  
Domingo A. Ferrer ◽  
Hema C. P. Movva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document