scholarly journals Origins of Twinned Microstructures in B12As2 Epilayers Grown on (0001) 6H-SiC and Their Influence on Physical Properties

2009 ◽  
Vol 1164 ◽  
Author(s):  
Yu Zhang ◽  
Hui Chen ◽  
Ning Zhang ◽  
Michael Dudley ◽  
Yinyan Gong ◽  
...  

AbstractThe defect structure in B12As2 epitaxial layers grown at two different temperatures on (0001) 6H-SiC by chemical vapor deposition (CVD) was studied using synchrotron white beam x-ray topography (SWBXT) and high resolution transmission electron microscopy (HRTEM). The observed differences in microstructures were correlated with the differences in nucleation at the two growth temperatures. The effect of the difference in microstructure on macroscopic properties of the B12As2 was illustrated using the example of thermal conductivity which was measured using the 3-ω technique. The relationship between the measured thermal conductivity and observed microstructures is discussed.

Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1062
Author(s):  
Yi Chu ◽  
Yugui Cui ◽  
Shaoyun Huang ◽  
Yingjie Xing ◽  
Hongqi Xu

SmB6 nanowires, as a prototype of nanostructured topological Kondo insulator, have shown rich novel physical phenomena relating to their surface. Catalyst-assisted chemical vapor deposition (CVD) is a common approach to prepare SmB6 nanowires and Ni is the most popular catalyst used to initiate the growth of SmB6 nanowires. Here, we study the effect of growth mechanism on the surface of SmB6 nanowires synthesized by CVD. Two types of SmB6 nanowires are obtained when using Ni as the catalyst. In addition to pure SmB6 nanowires without Ni impurity, a small amount of Ni is detected on the surface of some SmB6 nanowires by element analysis with transmission electron microscopy. In order to eliminate the possible distribution of Ni on nanowire surface, we synthesize single crystalline SmB6 nanowires by CVD without using catalyst. The difference between catalyst-assisted and catalyst-free growth mechanism is discussed.


2002 ◽  
Vol 16 (08) ◽  
pp. 1261-1267 ◽  
Author(s):  
M. P. SINGH ◽  
S. A. SHIVASHANKAR ◽  
T. SHRIPATHI

We have studied the chemical composition of alumina ( Al 2 O 3) films grown on Si(100) at different substrate temperatures by metalorganic chemical vapor deposition (MOCVD) using aluminium acetylactonate { Al(acac) 3} as the precursor. We have found that the resulting films of Al 2 O 3 contain substantial amounts of carbon. X-ray photoelectron spectroscopy (XPS) was employed to study the chemical state of carbon present in such films. The XPS spectrum reveals that the carbon present in Al 2 O 3 film is graphitic in nature. Auger electron spectroscopy (AES) was employed to study the distribution of carbon in the Al 2 O 3 films. The AES depth profile reveals that carbon is present throughout the film. The AES study on Al 2 O 3 films corroborates the XPS findings. An investigation of the Al 2 O 3/ Si (100) interface was carried out using cross-sectional transmission electron microscopy (XTEM). The TEM study reveals textured growth of alumina film on Si(100), with very fine grains of alumina embedded in an amorphous carbon-containing matrix.


1996 ◽  
Vol 441 ◽  
Author(s):  
Yan Chen ◽  
D. J. Johnson ◽  
R. H. Prince ◽  
Liping Guo ◽  
E. G. Wang

AbstractCrystalline C-N films composed of α- and β-C3N4, as well as other C-N phases, have been synthesized via bias-assisted hot-filament chemical vapor deposition using a gas mixture of nitrogen and methane. Scanning electron microscopy(SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the films. Lattice constants of the α- and β-C3N4 phases obtained coincide very well with the theoretical values. In addition to these phases, two new C-N phases in the films have been identified by TEM and XRD; one having a tetragonal structure with a = 5.65 Å, c = 2.75Å, and the second having a monoclinic structure with a = 5.065 Å, b= 11.5 Å, c = 2.801 Å and β = 96°. Their stoichiometric values and atomic arrangements have not yet been identified. Furthermore, variation in growth parameters, for example methane concentration, bias voltage, etc., can yield preferred growth of different C-N phases.


2008 ◽  
Vol 8 (3) ◽  
pp. 1284-1287
Author(s):  
Xitian Zhang ◽  
Zhuang Liu ◽  
Suikong Hark

Gallium oxide nanowires were synthesized on Si (001) substrate by chemical vapor deposition, using a Ga/Ga2O3 mixture as a precursor and Au as a catalyst. The structure of the as-synthesized products was examined by X-ray powder diffraction and high-resolution transmission electron microscopy, and found to be monoclinic β-Ga2O3. The morphologies of the β-Ga2O3 nanowires were characterized by scanning electron microscopy. The majority of the nanowires contain holes along their length, but a few were also found without holes. The holes are believed to be formed by the reaction of adsorbed Ga droplets on reactive terminating surfaces of the nanowires. For nanowires where these reactive surfaces are not exposed, the reaction of Ga is retarded. Cathodoluminescence (CL) of the nanowires was measured. Three emission bands centered at 376, 454, and 666 nm, respectively, were observed.


2013 ◽  
Vol 645 ◽  
pp. 3-9
Author(s):  
Qian Zhang ◽  
Qiu Xiang Wang ◽  
Hong Zhou Dong ◽  
Li Feng Dong

In this paper, we have synt hesized exotic carbon fibers with branched spurs by a chemical vapor deposition method using nickel catalyst precursor at 600 °C. No catalyst particles were found at the base of the carbon spurs, suggesting that the ni ckel catalyst particles, which were decomposed from the nickel catalyst precursor, facilitated the growth of the carbon fibers but not the spurs. The formation of the spurs resulted from the fluctuation of the carbon source gas acetylene flow. The samples were characterized by field emission sc anning electron microscopy, transmission electron microscopy, and X-ray powder diffraction.


2007 ◽  
Vol 539-543 ◽  
pp. 1230-1235 ◽  
Author(s):  
Hyoun Woo Kim ◽  
S.H. Shim

We have synthesized the high-density Ga2O3 nanowires on gold (Au)-coated silicon substrates using metalorganic chemical vapor deposition. The nanowires exhibited one-dimensional structures having circular cross sections with diameters in the range of 30-200 nm. The energy dispersive x-ray spectroscopy revealed that the nanowires contained elements of Ga and O, without Au-related impurities. X-ray diffraction analysis and high-resolution transmission electron microscopy showed that the Ga2O3 nanowires were crystalline.


1997 ◽  
Vol 482 ◽  
Author(s):  
E. L. Piner ◽  
N. A. El-Masry ◽  
S. X. Liu ◽  
S. M. Bedair

AbstractInGaN films in the 0–50% InN composition range have been analyzed for the occurrence of phase separation. The ñ0.5 jum thick InGaN films were grown by metalorganic chemical vapor deposition (MOCVD) in the 690 to 780°C temperature range and analyzed by θ−20 x-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area diffraction (SAD). As-grown films with up to 21% InN were single phase. However, for films with 28% InN and higher, the samples showed a spinodally decomposed microstructure as confirmed by TEM and extra spots in SAD patterns that corresponded to multiphase InGaN. An explanation of the data based on the GaN-InN pseudo-binary phase diagram is discussed.


2010 ◽  
Vol 1258 ◽  
Author(s):  
Andrés Rodríguez ◽  
Jesús Sangrador ◽  
Tomás Rodríguez ◽  
Carmen Ballesteros ◽  
Carmelo Prieto ◽  
...  

AbstractSiGe nanowires were grown by the vapor-liquid-solid method using a low pressure chemical vapor deposition reactor and different flows of the GeH4 and Si2H6 gas precursors. The morphology of the nanowires was studied by field emission scanning electron microscopy, and the length, diameter and density of nanowires were determined. Their structure and crystallinity were analyzed by transmission electron microscopy and its related techniques. Energy dispersive X-ray emission of individual nanowires as well a Raman spectroscopy were used to determine their composition and to analyze its homogeneity.


1986 ◽  
Vol 1 (3) ◽  
pp. 420-424 ◽  
Author(s):  
T.R. Jervis ◽  
L.R. Newkirk

Dielectric breakdown of gas mixtures can be used to deposit thin films by chemical vapor deposition with appropriate control of flow and pressure conditions to suppress gas-phase nucleation and particle formation. Using a pulsed CO2 laser operating at 10.6 μ where there is no significant resonant absorption in any of the source gases, homogeneous films from several gas-phase precursors have been sucessfully deposited by gas-phase laser pyrolysis. Nickel and molybdenum from the respective carbonyls representing decomposition chemistry and tungsten from the hexafluoride representing reduction chemistry have been demonstrated. In each case the gas precursor is buffered with argon to reduce the partial pressure of the reactants and to induce breakdown. Films have been characterized by Auger electron spectroscopy, x-ray diffraction, transmission electron microscopy, pull tests, and resistivity measurements. The highest quality films have resulted from the nickel depositions. Detailed x-ray diffraction analysis of these films yields a very small domain size consistent with the low temperature of the substrate and the formation of metastable nickel carbide. Transmission electron microscopy supports this analysis.


2013 ◽  
Vol 205-206 ◽  
pp. 400-405
Author(s):  
Peter Zaumseil ◽  
Yuji Yamamoto ◽  
Markus Andreas Schubert ◽  
Thomas Schroeder ◽  
Bernd Tillack

One way to further increase performance and/or functionality of Si micro-and nanoelectronics is the integration of alternative semiconductors on silicon (Si). We studied the Ge/Si heterosystem with the aim to realize a Ge deposition free of misfit dislocations and with low content of other structural defects. Ge nanostructures were selectively grown by chemical vapor deposition on periodic Si nanoislands (dots and lines) on SOI substrate either directly or with a thin (about 10 nm) SiGe buffer layer. The strain state of the structures was measured by different laboratory-based x-ray diffraction techniques. It was found that a suited SiGe buffer improves the compliance of the Si compared to direct Ge deposition; plastic relaxation during growth can be prevented, and fully elastic relaxation of the structure can be achieved. Transmission electron microscopy confirms that the epitaxial growth of Ge on nanostructured Si is free of misfit dislocations.


Sign in / Sign up

Export Citation Format

Share Document