Correlation between Activation Volume and Pillar Diameter for Mo and Nb BCC Pillars

2009 ◽  
Vol 1185 ◽  
Author(s):  
Andreas S. Schneider ◽  
Blythe G. Clark ◽  
Carl P. Frick ◽  
Eduard Arzt

AbstractCompression tests with varying loading rates were performed on [001] and [235] oriented small-scale bcc Mo and Nb pillars to determine the contribution of thermally activated screw dislocation motion during deformation. Calculated activation volumes were shown to be in the range of 2 - 9 b3 and by further examination were found to decrease with pillar diameter. This suggests that the kink-pair nucleation of screw dislocations is enhanced by surface effects in the micron and submicron range.

2013 ◽  
Vol 592-593 ◽  
pp. 71-74
Author(s):  
Zuzana Zdražilová ◽  
Zuzanka Trojanová ◽  
Kristián Máthis ◽  
Pavel Lukáč

AS21 magnesium alloy (2.1Al-1Si-balance Mg in wt.%) and the alloy reinforced with short δ-Al2O3fibres (Saffil®) were deformed in compression at temperatures between 23 and 300 °C. Stress relaxation tests were performed in order to reveal features of the thermally activated dislocation motion. Internal and effective components of the applied stress have been estimated. The activation volume decreases with increasing effective stress. The values of the activation volume and the activation enthalpy indicate that the main thermally activated process in the alloy as well as in the composite is the dislocation motion in non-compact planes.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
K. Srivastava ◽  
D. Weygand ◽  
D. Caillard ◽  
P. Gumbsch

Abstract Work hardening in bcc single crystals at low homologous temperature shows a strong orientation-dependent hardening for high symmetry loading, which is not captured by classical dislocation density based models. We demonstrate here that the high activation barrier for screw dislocation glide motion in tungsten results in repulsive interactions between screw dislocations, and triggers dislocation motion at applied loading conditions where it is not expected. In situ transmission electron microscopy and atomistically informed discrete dislocation dynamics simulations confirm coupled dislocation motion and vanishing obstacle strength for repulsive screw dislocations, compatible with the kink pair mechanism of dislocation motion in the thermally activated (low temperature) regime. We implement this additional contribution to plastic strain in a modified crystal plasticity framework and show that it can explain the extended work hardening regime observed for [100] oriented tungsten single crystal. This may contribute to better understanding the increase in ductility of highly deformed bcc metals.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 473
Author(s):  
Zuzanka Trojanová ◽  
Zdeněk Drozd ◽  
Pavel Lukáč ◽  
Ján Džugan

Stress-relaxation tests were performed during plastic deformation at room temperature of three magnesium Mg–Li alloys reinforced with 10 vol% of short Saffil fibers. For comparison, the composite with the Mg matrix was studied. The time dependencies of the stress decrease were analyzed with the aim to determine the activation volume and the main types of thermally activated processes occurring during plastic flow. The Mg4Li matrix alloy exhibited the hcp structure, while the composite with the Mg12Li matrix alloy had the bcc structure. The third alloy, Mg8Li, combined both phases, hcp and bcc. The stress acting in the matrix was divided into two components: the internal stress and the effective stress. Activation volume and stress-sensitivity parameters were determined as a function of effective stress and strain. While the values of the activation volume depending on the effective stress lay on one “master” curve, the strain dependence was different for all materials. The main thermally activated process in the hcp structure was the dislocation motion in the noncompact planes, while in the bcc structure, massive recovery processes connected with an increase in dislocations were identified.


Author(s):  
Christian Minnert ◽  
Hamad ur Rehman ◽  
Karsten Durst

Abstract Body-centered cubic metals like molybdenum and tungsten are interesting structural materials for high-temperature applications. These metals, are however, brittle at low homologous temperature, caused by the limited mobility of screw dislocations. In this study, the thermally activated deformation mechanisms in bcc Mo have been investigated using strain rate jump nanoindentation and compression tests as well as Charpy V-notch impact testing. The material shows a significant softening with increasing temperature and a maximum in strain rate sensitivity is found at the critical temperature, before decreasing again in the ductile regime. The activation volume, however, showed a distinct increase from about 5 b3 at the onset of the brittle to ductile transition temperature. Here we propose to use temperature-dependent nanoindentation strain rate jump testing and the activation volume as a complementary approach to provide some indication of the brittle to ductile transition temperature of bcc metals. Graphic Abstract


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Hirofumi Niiya ◽  
Kenichi Oda ◽  
Daisuke Tsuji ◽  
Hiroaki Katsuragi

Abstract The formation of aggregates consisting of snow, water, and tephra has been reported in small-scale experiments on three-phase flows containing tephra, water, and snow, representing lahars triggered by snowmelt. Such aggregates reduce the mobility of mud flow. However, the formation mechanism of such aggregates under various conditions has not been investigated. To elucidate the formation conditions and mechanical properties of the aggregates, we performed mixing experiments with materials on a rotating table and compression tests on the resulting aggregates with a universal testing machine in a low-temperature room at $$0\,^{\circ }\text {C}$$ 0 ∘ C . From experiments with varying component ratios of the mixture and tephra diameter, the following results were obtained: (i) the aggregate grew rapidly and reached maturity after a mixing time of 5 min; (ii) the mass of aggregates increased with snow concentration, exhibiting an approximately linear relationship; (iii) single aggregates with large mass formed at lower and higher tephra concentrations, whereas multiple aggregates with smaller mass were observed at intermediate concentrations; (iv) the shape of the aggregate satisfied the similarity law for an ellipsoid; (v) the compressive mechanical behavior could be modeled by an empirical nonlinear model. The obtained mechanical properties of the aggregates were independent of the experimental conditions; (vi) scaling analysis based on the Reynolds number and the strength of the aggregates showed that the aggregates cannot form in ice-slurry lahars. Our findings suggest that low-speed lahars containing snow and ice are likely to generate aggregates, but snow and ice in the ice-slurry lahars are dispersed without such aggregates.


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 889 ◽  
Author(s):  
Sanghita Mridha ◽  
Mageshwari Komarasamy ◽  
Sanjit Bhowmick ◽  
Rajiv Mishra ◽  
Sundeep Mukherjee

High entropy alloys (HEAs) have attracted widespread interest due to their unique properties at many different length-scales. Here, we report the fabrication of nanocrystalline (NC) Al0.1CoCrFeNi high entropy alloy and subsequent small-scale plastic deformation behavior via nano-pillar compression tests. Exceptional strength was realized for the NC HEA compared to pure Ni of similar grain sizes. Grain boundary mediated deformation mechanisms led to high strain rate sensitivity of flow stress in the nanocrystalline HEA.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 654 ◽  
Author(s):  
Jacob Pope ◽  
Martin Jackson

Material reductions, weight savings, design optimisation, and a reduction in the environmental impact can be achieved by improving the performance of near-net shape (NNS) titanium alloy components. The method demonstrated in this paper is to use a solid-state approach, which includes diffusion bonding discrete layers of dissimilar titanium alloy powders (CP-Ti, Ti-6Al-4V and Ti-5Al-5Mo-5V-3Cr) using field-assisted sintering technology (FAST), followed by subsequent forging steps. This article demonstrates the hybrid process route, firstly through small-scale uni-axial compression tests and secondly through closed-die forging of dissimilar titanium alloy FAST preforms into an NNS (near-net shape) component. In order to characterise and simulate the underlying forging behaviour of dissimilar alloy combinations, uni-axial compression tests of FAST cylindrical samples provided flow stress behaviour and the effect of differing alloy volume fractions on the resistance to deformation and hot working behaviour. Despite the mismatch in the magnitude of flow stress between alloys, excellent structural bond integrity is maintained throughout. This is also reflected in the comparatively uncontrolled closed-die forging of the NNS demonstrator components. Microstructural analysis across the dissimilar diffusion bond line was undertaken in the components and finite element modelling software reliably predicts the strain distribution and bond line flow behaviour during the multi-step forging process.


2008 ◽  
Vol 1086 ◽  
Author(s):  
Yuichiro Koizumi ◽  
Yoritoshi Minamino ◽  
Takayuki Tanaka ◽  
Kazuki Iwamoto

AbstractA mixed microstructure of antiphase domains (APD) and fine lamellar structure were introduced in a Ti-39at%Al single crystal and it was examined whether the APD hardening works even in nano-scaled lamellar structures. The hardness increases with decreasing APD size even where the L is smaller than 100 nm below which the hardening by lamellar refining saturates. The mechanism of the additivity of strengthening by APD and lamellar structure is discussed in the context of the geometries of slip direction, lamellar boundaries and APD boundaries (APDBs). For {1100}<1120> prism slip (the easiest slip system of α2-Ti3Al), the lamellar boundaries are parallel to the slip direction, and therefore they interrupt the motion of screw dislocations effectively. On the other hand, APDBs inclined from lamellar boundaries can effectively obstruct the dislocation motion regardless of the dislocation character because the shear of such APDBs results in the formation of step-like APDBs on the slip-plane and requires additional stress for dislocation motion whereas APDBs parallel to the slip direction can be sheared without forming such a step-like APDB. Accordingly, APDs and lamellar structure can contribute to the strengthening complementarily.


2000 ◽  
Vol 646 ◽  
Author(s):  
Marc C. Fivel ◽  
Francois Louchet ◽  
Bernard Viguier ◽  
Marc Verdier

ABSTRACTA 3D mesoscopic simulation of dislocation behaviour is adapted to the case of γ-TiAl. It shows that, in the temperature range of the stress anomaly, ordinary dislocation motion essentially proceeds through a series of pinning and unzipping processes on screw dislocations. Pinning points are cross-slip generated jogs, whose density increases with temperature. Unzipping of cusps restores the screw character of the dislocation. The balance between pinning and unzipping becomes increasingly difficult as temperature raises, and results in dislocation exhaustion. All these features agree with the so-called “Local Pinning Unzipping” mechanism.


2019 ◽  
Vol 54 (15) ◽  
pp. 10728-10736
Author(s):  
Yinan Wang ◽  
Xiaoyang Wang ◽  
Qiulin Li ◽  
Ben Xu ◽  
Wei Liu

Sign in / Sign up

Export Citation Format

Share Document