Thin Film Adhesion to Ion Bombarded Surfaces

1988 ◽  
Vol 119 ◽  
Author(s):  
P. Anders Ingemarsson ◽  
T. A. Tombrello

AbstractWe report on the use of 20 MeV C14+ ion beams for pre-irradiation of Si, SiO2 and Al2O3 surfaces with resulting alterations in the adhesion of subsequently deposited Au and Ag thin films. The effect does not follow the same pattern for Au and Ag films, nor is there a simple correlation to the previously observed adhesion effect induced by ion irradiation after film deposition. Possible mechanisms, both for pre-irradiation and post-irradiation effects, are discussed, as is the importance of chemical structures with respect to interfacial bond strength.

1991 ◽  
Vol 239 ◽  
Author(s):  
H. S. Jeong ◽  
Y. Z. Chu ◽  
M. B. Freiler ◽  
C. Durning ◽  
R. C. White

ABSTRACTFracture energy (Ga) of BPDA-PDA polyimide (PI) on modified and unmodified Si surfaces was measured by the “blister” test as a function of final cure temperature. It is proven quantitatively that surface modification prior to thin film deposition enhances adhesion. Metal adhesion to PI was also measured by the same method. Reproducibility of the data was found to be exceptionally good for both cases. The linear elastic model is quite valid for the test of thin film adhesion. Therefore, it is believed that this test is best suited for Ga measurements in the study of thin film adhesion for microelectronic packaging.


Coatings ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 303 ◽  
Author(s):  
Sergey Grigoriev ◽  
Alexander Metel ◽  
Marina Volosova ◽  
Yury Melnik

A new hollow cathode sputtering system is used for beam-assisted deposition of thin films on dielectric substrates. A copper target placed at the hollow cathode bottom is uniformly sputtered by argon ions from the glow discharge plasma filling the cathode. Through an emissive grid, sputtered copper atoms leave the cathode together with accelerated argon ions. On their way to the substrate, the ions—due to charge exchange collisions—turn into fast argon atoms bombarding the growing film. With increasing argon ion energy, continuous bombardment results in the film adhesion improvement and reduction of the deposition rate down to zero, at an energy of about 2 keV. The pulsed bombardment does not influence the film deposition rate, and results in a monotonic growth of the film adhesion up to 20 MPa when increasing the fast atom energy up to 10 keV.


1970 ◽  
Vol 2 (4) ◽  
pp. 270-278 ◽  
Author(s):  
C. T. H. Stoddart ◽  
D. R. Clarke ◽  
C. J. Robbie

1985 ◽  
Vol 107 (4) ◽  
pp. 472-477 ◽  
Author(s):  
Bond-Yen Ting ◽  
W. O. Winer ◽  
S. Ramalingam

Film deposition techniques are used in several applications. In tribology, wear and friction can be changed significantly by depositing a thin film on the contacting surfaces. A vital factor for this application is the adhesion between the film and the substrate. Due to high contact stresses in many tribological applications, high adhesion is required. Measurement of adhesion is therefore important if coated elements are to be used with confidence. A method has been developed for the measurement of adhesion which uses a composite model. This method is presented in this paper. A one-dimensional elastic analysis is sufficient to determine adhesion strength. In this method an interfacial shear stress is generated at the film-to-substrate interface by imposing a strain difference between the film and substrate. This interfacial shear stress is used to evaluate film adhesion. If the film-substrate adhesion is less than the shear stress applied to the interface the film will debond; otherwise, it will remain adhered to the substrate. The analysis developed yields a quantitative expression for the interfacial shear strength. Therefore the adhesion can be quantitatively determined.


1992 ◽  
Vol 268 ◽  
Author(s):  
Stephen Sugden ◽  
Carl J. Sofield ◽  
Martin P. Murrell

ABSTRACTIonising radiations have been observed to produce significant improvements in thin film adhesion by several experimental groups. We present the results of an exhaustive and conclusive series of experiments on the effect of clean processing and heavy ion irradiation on the adhesion of metal films to substrates of silicon and tantalum. The experiments were performed in a unique research-scale Ultra High Vacuum Cluster tool, to gain control of the all important surface and interface compositions.Our results show that adhesion is greatest for films deposited on atomically clean surfaces. Such films adhere better than conventionally deposited films subjected to a post deposition irradiation treatment. Clean processed samples show no benefit from subsequent radiation processing. Our results are consistent with the radiation enhanced adhesion phenomenon being due to the radiolysis of interfacial contaminant layers, producing an interface with lower interfacial energy and hence better bonding. Where adhesion enhancement is observed, the process is consistent with a semi-empirical model of the process using an activation energy of some 5 eV per atom.


1988 ◽  
Vol 129 ◽  
Author(s):  
P. A. Ingemarsson ◽  
T. Ericsson ◽  
G. Possnert ◽  
R. Wappling

ABSTRACTConversion electron M6ssbauer spectroscopy was used as a means of investigating radiation induced changes at thin film interfaces. 25 Å thick layers of 57Fe were evaporated onto substrates of Si,SiO2 and A12O3 andcovered with 150 Å 56Fe. Samples were then subjected to ion irradiation with 20 MeV C14+ to doses ranging from 1012 to 2x 1014 ions/cm2 and subsequently annealed in vacuum at 450 ºC. Mössbauer spectra were recorded before and after each step. The analysis revealed chemical alterations, induced by the ion bombardment, indicative of film-substrate bond formation and reconstruction of residual surface hydrocarbons. The results are interpreted in view of accompanying enhancements in thin film adhesion.


1995 ◽  
Vol 35 (3) ◽  
pp. 603-608 ◽  
Author(s):  
S.R. Anderson ◽  
R.D. Schrimpf ◽  
K.F. Galloway ◽  
J.L. Titus

Sign in / Sign up

Export Citation Format

Share Document