Micromachining of thin 3C-SiC films for mechanical properties investigation

2010 ◽  
Vol 1246 ◽  
Author(s):  
Jean-Francois Michaud ◽  
Sai Jiao ◽  
Anne-Elisabeth Bazin ◽  
Marc Portail ◽  
Thierry Chassagne ◽  
...  

AbstractIn this work, the mechanical properties of cubic silicon carbide are explored through the analysis of the static and dynamic behavior of 3C-SiC cantilevers. The investigated structures were micro-machined using Inductively Coupled Plasma (ICP) etching of thin 3C-SiC films grown on silicon. The aim was to evaluate the influence of some basic parameters (film orientation, film thickness, defect density) on the mechanical properties of the material.X-Ray Diffraction was used to evaluate the crystalline quality of the epilayers. Scanning Electron Microscopy observations of static cantilever deflection highlight the major difference between the stress states of (100) and (111) oriented layers for which the intrinsic stresses are of opposite signs. The cantilever deflection is highly dependent on the film thickness, as stated for (100) oriented epilayers. The lowest deflection is obtained for the thickest layer. The Young's modulus of 3C-SiC is calculated from the resonance frequency of clamped-free cantilevers, measured by laser Doppler vibrometry. The relatively low and orientation independent value of Young's modulus (~350GPa) found on the samples is probably associated with the high defect density usually observed in very thin 3C-SiC films grown on Si.

2014 ◽  
Vol 592-594 ◽  
pp. 842-846
Author(s):  
Vijaykumar S. Jatti ◽  
Meena Laad ◽  
T.P. Singh

Diamond like carbon (DLC) is a metastable form of amorphous carbon containing fraction of sp2 and sp3 bonds. Their mechanical properties depend on the sp3 content as well as on the number and size of graphitic nanoclusters. It is noted that properties change significantly depending on the method of preparation of these films. These properties are also altered by the composition of the films. In view of this, the objective of present work was to deposit hydrogenated DLC films on p-type silicon substrate using inductively coupled plasma enhanced chemical vapor deposition (IC-PECVD) technique with varying bias voltage, bias frequency, gas deposition pressure and gas composition ratio. They play important role in film deposition process and are responsible for change in mechanical properties of the film such as hardness and Young's modulus. Raman spectroscopy was used to study the structural arrangement of carbon atoms. Significant change in the mechanical properties of the film was observed which can be attributed to the change in sp3 and sp2 contents in the DLC film. It was observed that the process parameters considerably affect the hardness and Young's modulus of the DLC films. The films of desired mechanical properties can be deposited for various industrial and biomedical applications by maintaining suitable deposition conditions.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1072
Author(s):  
Sergio Sapienza ◽  
Matteo Ferri ◽  
Luca Belsito ◽  
Diego Marini ◽  
Marcin Zielinski ◽  
...  

3C-SiC is an emerging material for MEMS systems thanks to its outstanding mechanical properties (high Young’s modulus and low density) that allow the device to be operated for a given geometry at higher frequency. The mechanical properties of this material depend strongly on the material quality, the defect density, and the stress. For this reason, the use of SiC in Si-based microelectromechanical system (MEMS) fabrication techniques has been very limited. In this work, the complete characterization of Young’s modulus and residual stress of monocrystalline 3C-SiC layers with different doping types grown on <100> and <111> oriented silicon substrates is reported, using a combination of resonance frequency of double clamped beams and strain gauge. In this way, both the residual stress and the residual strain can be measured independently, and Young’s modulus can be obtained by Hooke’s law. From these measurements, it has been observed that Young’s modulus depends on the thickness of the layer, the orientation, the doping, and the stress. Very good values of Young’s modulus were obtained in this work, even for very thin layers (thinner than 1 mm), and this can give the opportunity to realize very sensitive strain sensors.


2001 ◽  
Vol 695 ◽  
Author(s):  
Yong Xiang ◽  
Xi Chen ◽  
Joost J. Vlassak

ABSTRACTThe mechanical properties of freestanding electroplated Cu films were determined by measuring the deflection of Si-framed, pressurized membranes. The films were deformed under plane-strain conditions. The pressure-deflection data are converted into stress-strain curves by means of simple analytical formulae. The microstructure of the Cu films was characterized using scanning electron microscopy and x-ray diffraction. The yield stress, Young's modulus, and residual stress were determined as a function of film thickness and microstructure. Both yield stress and Young's modulus increase with decreasing film thickness and correlate well with changes in the microstructure and texture of the films.


1999 ◽  
Vol 562 ◽  
Author(s):  
Dongil Son ◽  
Yun-Hee Lee ◽  
Jeong-Hoon Ahn ◽  
Dongil Kwon

ABSTRACTAluminum films have wide applications in micromechanical devices such as micro sensors and actuators. Therefore, their mechanical properties are very important for reliability evaluation. However, there is no standardized method to evaluate the mechanical properties of the materials used in MEMS(microelectromechanical system) devices since the measured mechanical properties are influenced by many factors such as the surface condition of materials, intrinsic limit of the measurement device, etc. Hence, it was intended to evaluate the mechanical properties of thin film, which is important in its mechanical operation. Because MEMS devices are usually operated in the elastic range, Young's modulus and yield strength were evaluated by using a microcantilever beam technique. First, A1 cantilever beams were fabricated using the silicon bulk micromachining technology to have various film thicknesses. The load-displacement curves during beam bending by nanoindentation method were then obtained. The linear relationship of the curve in elastic range was utilized in deriving Young's modulus of the A1 film, which gave reproducible results regardless of film thickness. In the high load range, the deviation from the linear relation was detected, so that yield strength of A1 film could be evaluated. It was found that the yield strength increases with decreasing film thickness. By applying the misfit dislocation theory and the Hall-Petch relationship, the theoretical estimation could predict the trend of yield strength.


1994 ◽  
Vol 9 (1) ◽  
pp. 96-103 ◽  
Author(s):  
M.A. El Khakani ◽  
M. Chaker ◽  
A. Jean ◽  
S. Boily ◽  
J.C. Kieffer ◽  
...  

Due to its interesting mechanical properties, silicon carbide is an excellent material for many applications. In this paper, we report on the mechanical properties of amorphous hydrogenated or hydrogen-free silicon carbide thin films deposited by using different deposition techniques, namely plasma enhanced chemical vapor deposition (PECVD), laser ablation deposition (LAD), and triode sputtering deposition (TSD). a-SixC1−x: H PECVD, a-SiC LAD, and a-SiC TSD thin films and corresponding free-standing membranes were mechanically investigated by using nanoindentation and bulge techniques, respectively. Hardness (H), Young's modulus (E), and Poisson's ratio (v) of the studied silicon carbide thin films were determined. It is shown that for hydrogenated a-SixC1−x: H PECVD films, both hardness and Young's modulus are dependent on the film composition. The nearly stoichiometric a-SiC: H films present higher H and E values than the Si-rich a-SixC1−x: H films. For hydrogen-free a-SiC films, the hardness and Young's modulus were as high as about 30 GPa and 240 GPa, respectively. Hydrogen-free a-SiC films present both hardness and Young's modulus values higher by about 50% than those of hydrogenated a-SiC: H PECVD films. By using the FTIR absorption spectroscopy, we estimated the Si-C bond densities (NSiC) from the Si-C stretching absorption band (centered around 780 cm−1), and were thus able to correlate the observed mechanical behavior of a-SiC films to their microstructure. We indeed point out a constant-plus-linear variation of the hardness and Young's modulus upon the Si-C bond density, over the NSiC investigated range [(4–18) × 1022 bond · cm−3], regardless of the film composition or the deposition technique.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Salloom ◽  
S. A. Mantri ◽  
R. Banerjee ◽  
S. G. Srinivasan

AbstractFor decades the poor mechanical properties of Ti alloys were attributed to the intrinsic brittleness of the hexagonal ω-phase that has fewer than 5-independent slip systems. We contradict this conventional wisdom by coupling first-principles and cluster expansion calculations with experiments. We show that the elastic properties of the ω-phase can be systematically varied as a function of its composition to enhance both the ductility and strength of the Ti-alloy. Studies with five prototypical β-stabilizer solutes (Nb, Ta, V, Mo, and W) show that increasing β-stabilizer concentration destabilizes the ω-phase, in agreement with experiments. The Young’s modulus of ω-phase also decreased at larger concentration of β-stabilizers. Within the region of ω-phase stability, addition of Nb, Ta, and V (Group-V elements) decreased Young’s modulus more steeply compared to Mo and W (Group-VI elements) additions. The higher values of Young’s modulus of Ti–W and Ti–Mo binaries is related to the stronger stabilization of ω-phase due to the higher number of valence electrons. Density of states (DOS) calculations also revealed a stronger covalent bonding in the ω-phase compared to a metallic bonding in β-phase, and indicate that alloying is a promising route to enhance the ω-phase’s ductility. Overall, the mechanical properties of ω-phase predicted by our calculations agree well with the available experiments. Importantly, our study reveals that ω precipitates are not intrinsically embrittling and detrimental, and that we can create Ti-alloys with both good ductility and strength by tailoring ω precipitates' composition instead of completely eliminating them.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3467
Author(s):  
Anna Nocivin ◽  
Doina Raducanu ◽  
Bogdan Vasile ◽  
Corneliu Trisca-Rusu ◽  
Elisabeta Mirela Cojocaru ◽  
...  

The present paper analyzed the microstructural characteristics and the mechanical properties of a Ti–Nb–Zr–Fe–O alloy of β-Ti type obtained by combining severe plastic deformation (SPD), for which the total reduction was of etot = 90%, with two variants of super-transus solution treatment (ST). The objective was to obtain a low Young’s modulus with sufficient high strength in purpose to use the alloy as a biomaterial for orthopedic implants. The microstructure analysis was conducted through X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) investigations. The analyzed mechanical properties reveal promising values for yield strength (YS) and ultimate tensile strength (UTS) of about 770 and 1100 MPa, respectively, with a low value of Young’s modulus of about 48–49 GPa. The conclusion is that satisfactory mechanical properties for this type of alloy can be obtained if considering a proper combination of SPD + ST parameters and a suitable content of β-stabilizing alloying elements, especially the Zr/Nb ratio.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 461
Author(s):  
Konrad Kosiba ◽  
Konda Gokuldoss Prashanth ◽  
Sergio Scudino

The phase and microstructure formation as well as mechanical properties of the rapidly solidified Mg67Ag33 (at. %) alloy were investigated. Owing to kinetic constraints effective during rapid cooling, the formation of equilibrium phases is suppressed. Instead, the microstructure is mainly composed of oversaturated hexagonal closest packed Mg-based dendrites surrounded by a mixture of phases, as probed by X-ray diffraction, electron microscopy and energy dispersive X-ray spectroscopy. A possible non-equilibrium phase diagram is suggested. Mainly because of the fine-grained dendritic and interdendritic microstructure, the material shows appreciable mechanical properties, such as a compressive yield strength and Young’s modulus of 245 ± 5 MPa and 63 ± 2 GPa, respectively. Due to this low Young’s modulus, the Mg67Ag33 alloy has potential for usage as biomaterial and challenges ahead, such as biomechanical compatibility, biodegradability and antibacterial properties are outlined.


Sign in / Sign up

Export Citation Format

Share Document