Thermoelectric Properties of SiO2/SiO2+Ag Nanolayered Multilayer Films Effected by MeV Si Ions

2010 ◽  
Vol 1267 ◽  
Author(s):  
S. Budak ◽  
Cydale Smith ◽  
John Chacha ◽  
Marcus Pugh ◽  
Hervie Martin ◽  
...  

AbstractWe have prepared 100 periodic nano-layers of SiO2/AgSiO2 with Au layer deposited on both sides as metal contacts. The deposited multi-layer films have a periodic structure consisting of alternating layers where each layer is 3.3 nm thick. The purpose of this research is to tailor the figure of merit of the thermoelectric materials generated from the nanolayers of nanocrystals of Ag with SiO2 as host and as buffer layer using a combination of co-deposition and MeV ions bombardment taking advantage of energy deposited in the MeV ion track to nucleate nanoclusters. The electrical and thermal properties of the nanolayered structures were studied before and after 5 MeV Si ions bombardment at various fluences to form nanocrystals. In addition to thermoelectric properties, some optical properties of the SiO2/SiO2+Ag multi-layer superlattice films have been studied.

2007 ◽  
Vol 1020 ◽  
Author(s):  
C.C. Smith ◽  
S. Budak ◽  
S. Guner ◽  
C. Muntele ◽  
R. A. Minamisawa ◽  
...  

AbstractWe prepared 50 periodic nano-layers of SiO2/AgxSiO2(1-x). The deposited multi-layer films have a periodic structure consisting of alternating layers where each layer is between 1-10 nm thick. The purpose of this research is to generate nanolayers of nanocrystals of Ag with SiO2 as host and as buffer layer using a combination of co-deposition and MeV ion bombardment taking advantage of the electronics energy deposited in the MeV ion track due to ionization in order to nucleate nanoclusters. Our previous work showed that these nanoclusters have crystallinity similar to the bulk material. Nanocrystals of Ag in silica produce an optical absorption band at about 420 nm. Due to the interaction of nanocrystals between sequential nanolayers there is widening of the absorption band. The electrical and thermal properties of the layered structures were studied before and after 5 MeV Si ions bombardment at various fluences to form nanocrystals in layers of SiO2 containing few percent of Ag. Rutherford Backscattering Spectrometry (RBS) was used to monitor the stoichiometry before and after MeV bombardments.


2007 ◽  
Vol 1020 ◽  
Author(s):  
S. Budak ◽  
S. Guner ◽  
C. Muntele ◽  
C. C. Smith ◽  
R. L. Zimmerman ◽  
...  

AbstractWe prepared 8 periodic nano-layers of SiO2/SiO2+Zn4Sb3. The deposited multi-layer films have a periodic structure consisting of alternating layers where each layer is between 1-10 nm thick. The purpose of this research is to generate nanolayers of nanostructures of Zn4Sb3 with SiO2 as host and as buffer layer using a combination of co-deposition and MeV ion bombardment taking advantage of the electronics energy deposited in the MeV ion track due to ionization in order to nucleate nanostructures. The electrical and thermal properties of the layered structures were studied before and after bombardment by 5 MeV Si ions at various fluences to form nanostructures in layers of SiO2 containing Zn4Sb3. Rutherford Backscattering Spectrometry (RBS) was used to monitor the stoichiometry before and after MeV bombardments.


2005 ◽  
Vol 297-300 ◽  
pp. 875-880
Author(s):  
Cheol Ho Lim ◽  
Ki Tae Kim ◽  
Yong Hwan Kim ◽  
Dong Choul Cho ◽  
Young Sup Lee ◽  
...  

P-type Bi0.5Sb1.5Te3 compounds doped with 3wt% Te were fabricated by spark plasma sintering and their mechanical and thermoelectric properties were investigated. The sintered compounds with the bending strength of more than 50MPa and the figure-of-merit 2.9×10-3/K were obtained by controlling the mixing ratio of large powders (PL) and small powders (PS). Compared with the conventionally prepared single crystal thermoelectric materials, the bending strength was increased up to more than three times and the figure-of-merit Z was similar those of single crystals. It is expected that the mechanical properties could be improved by using hybrid powders without degradation of thermoelectric properties.


2008 ◽  
Vol 1100 ◽  
Author(s):  
Sadik Guner ◽  
Satilmis Budak ◽  
Claudiu I Muntele ◽  
Daryush Ila

AbstractMonolayer thin films of YbBiPt and YBiPt have been produced with 560 nm and 394 nm thick respectively in house and their thermoelectric properties were measured before and after MeV ion bombardment. The energy of the ions were selected such that the bombarding Si ions stop in the silicon substrate and deposit only electronic energy by ionization in the deposited thin film. The bombardment by 5.0 MeV Si ions at various fluences changed the homogeneity as well as reducing the internal stress in the films thus affecting the thermal, electrical and Seebeck coefficient of thin films. The stoichiometry of the thin films was determined using Rutherford Backscattering Spectrometry, the thickness has been measured using interferometry and the electrical conductivity was measured using Van der Pauw method. Thermal conductivity of the thin films was measured using an in-house built 3ω thermal conductivity measurement system. Using the measured Seebeck coefficient, thermal conductivity and electrical conductivity we calculated the figure of merit (ZT). We will report our findings of change in the measured figure of merit as a function of bombardment fluence.


2010 ◽  
Vol 650 ◽  
pp. 137-141
Author(s):  
Qing Sen Meng ◽  
Wen Hao Fan ◽  
L.Q. Wang ◽  
L.Z. Ding

Iron disilicide (-FeSi2, and -FeSi2+Cu0.1wt%) were prepared by a field-activated pressure assisted synthesis(FAPAS) method from elemental powders and the thermoelectric properties were investigated. The average grain size of these products is about 0.3m. The thermal conductivity of these materials is 3-4wm-1K-1in the temperature range 300-725K. These products’ figure of merit is 28.50×10-4 in the temperature range 330-450K. The additions of Cu promote the phase transformation of -Fe2Si5 + -FeSi → β-FeSi2 and shorten the annealing time. It is proved that FAPAS is a benign and rapid process for sintering of -FeSi2 thermoelectric materials.


2021 ◽  
Author(s):  
◽  
Michael Ng

<p>Energy consumption worldwide is constantly increasing, bringing with it the demand for low cost, environmentally friendly and efficient energy technologies. One of these promising technologies is thermoelectrics in which electric power is harvested from waste heat energy. The efficiency of a thermoelectric device is determined by the dimensionless figure of merit ZT = σS²T/k where σ is the electrical conductivity, S is the thermopower, k is the thermal conductivity, and T is the average temperature. In this thesis we investigate the use of nanostructuring, which has been known to lead to significant reduction in the lattice thermal conductivity to maximise the figure of merit.  One of the most successful bulk thermoelectric materials is Bi₂Te₃, with a ZT of unity at room temperature. Here we investigate the effects of nanostructuring on the thermoelectric properties of Bi₂Te₃. Sub-100 nm ₂Te₃ nanoparticles were successfully synthesized and the figure of merit was found to be ZT ~ 5X10⁻⁵ at room temperature. The effect of a ligand exchange treatment to replace the long chain organic ligand on the as-synthesized nanoparticles with a short chain alkyl ligand was explored. After ligand exchange treatment with hydrazine the figure of merit of sub-100 nm Bi₂Te₃ was found to increase by two fold to ZT ~ 1X10⁻⁴ at room temperature. Overall the figure of merit is low compared to other nanostructured Bi₂Te₃, this was attributed to the extremely low electrical conductivity. The thermopower and thermal conductivity were found to be ~96 μVK⁻¹ and ~0.38 Wm⁻¹ K⁻¹ at 300 K respectively, which show improvements over other nanostructured Bi₂Te₃.  Further optimisation of the figure of merit was also investigated by incorporating Cu, Ni and Co dopants. The most successful of these attempts was Co in which 14.5% Co relative to Bi was successfully incorporated into sub-100 nm Bi₂Te₃. The figure of merit of nanostructured Bi₁.₇₁Co₀.₂₉Te₁.₇₁ alloy was found to increase by 40% to a ZT ~ 1.4X10⁻⁴ at room temperature. Although overall the figure of merit is low, the effect of Co alloying and hydrazine treatment shows potential as a route to optimise the figure of merit.  A potential novel material for thermoelectrics applications is inorganicorganic perovskite single crystals. Here we report a synthetic strategy to successfully grow large millimetre scale single crystals of MAPbBr₃₋xClx, FAPbBr₃₋xClx, and MAPb₁-xSnxBr₃ (MA = methylammonium and FA = formamidinium) using inverse temperature crystallisation (ITC) in a matter of days. This is the first reported case of mixed Br/Cl single crystals with a FA cation and mixed Pb/Sn based perovskites grown using ITC. The bandgap of these single crystals was successfully tuned by altering the halide and metal site composition. It was found that single crystals of FAPbBr₃₋xClx were prone to surface degradation with increased synthesis time. This surface degradation was observed to be reversible by placing the single crystals in an antisolvent such as chloroform.  A tentative model was proposed to analyse the IV characteristics of the single crystal perovskites in order to extract mobilities and diffusion lengths. The MAPbBr₃ and MAPbBr₂.₅Cl₀.₅ single crystal mobilities were found to be between 30-390 cm² V⁻¹ s⁻¹ and 10-100 cm² V⁻¹ s⁻¹ respectively, the diffusion lengths were found to be between 2-8 μm and 1-4 μm respectively. This is an improvement over polycrystalline thin film perovskites and comparable to other single crystal perovskites. The conductance of MAPb₁-xSnxBr₃ based perovskites was found to increase by 2 orders of magnitude even with just 1% of Sn incorporated. The thermal conductivity of MAPbBr₃ single crystals was found to be ~1.12 Wm⁻¹ K⁻¹ at room temperature which is reasonable low for single crystals, however no other thermoelectric properties could be measured due to the self cleaving nature of the single crystals with decreasing temperature and the high resistivity of the material.</p>


2020 ◽  
Vol 11 ◽  
pp. 695-702 ◽  
Author(s):  
Aliyu Kabiru Isiyaku ◽  
Ahmad Hadi Ali ◽  
Nafarizal Nayan

Indium tin oxide (ITO) is a widely used material for transparent conductive oxide (TCO) films due to its good optical and electrical properties. Improving the optoelectronic properties of ITO films with reduced thickness is crucial and quite challenging. ITO-based multilayer films with an aluminium–silver (Al–Ag) interlayer (ITO/Al–Ag/ITO) and a pure ITO layer (as reference) were prepared by RF and DC sputtering. The microstructural, optical and electrical properties of the ITO/Al–Ag/ITO (IAAI) films were investigated before and after annealing at 400 °C. X-ray diffraction measurements show that the insertion of the Al–Ag intermediate bilayer led to the crystallization of an Ag interlayer even at the as-deposited stage. Peaks attributed to ITO(222), Ag(111) and Al(200) were observed after annealing, indicating an enhancement in crystallinity of the multilayer films. The annealed IAAI film exhibited a remarkable improvement in optical transmittance (86.1%) with a very low sheet resistance of 2.93 Ω/sq. The carrier concentration increased more than twice when the Al–Ag layer was inserted between the ITO layers. The figure of merit of the IAAI multilayer contact has been found to be high at 76.4 × 10−3 Ω−1 compared to a pure ITO contact (69.4 × 10−3 Ω−1). These highly conductive and transparent ITO films with Al–Ag interlayer can be a promising contact for low-resistance optoelectronics devices.


2021 ◽  
Author(s):  
Keisuke Shinozaki ◽  
Yosuke Goto ◽  
Kazuhisa Hoshi ◽  
Ryosuke Kiyama ◽  
Naoto Nakamura ◽  
...  

Zintl compounds containing Sb have been studied extensively because of their promising thermoelectric properties. In this study, we prepared As/P-based Zintl compounds, EuIn2As2-xPx (x = 0 to 2) and SrSn2As2, and examined their potential for use as thermoelectric materials. These compounds show hole carrier concentrations of ~10^19 /cm3 for EuIn2As2-xPx and ~10^21 /cm3 for SrSn2As2 at 300 K. The high carrier concentration of SrSn2As2 is likely owing to self-doping by hole-donating Sn vacancies. The electrical power factor reaches ~1 mW/mK2 at ~600 K for EuIn2As2-xPx with x = 0.1 and 0.2. The lattice thermal conductivity is determined to be 1.6–2.0 W/mK for EuIn2As2 and SrSn2As2, and 2.8 W/mK for EuIn2P2 at 673 K. The dimensionless figure of merit reaches ZT = 0.29 at 773 K for EuIn2As2-xPx with x = 0.2. First-principles calculations show that EuIn2As2 and SrSn2As2 are topologically nontrivial materials with band inversion, while EuIn2P2 is a conventional semiconductor with a bandgap. The present study demonstrates that As/P-based Zintl compounds can also show promising thermoelectric properties, thus expanding the frontier for efficient thermoelectric materials.


Author(s):  
Micah P. Vallin ◽  
Richard Z. Zhang

Abstract Thermoelectric materials are defined as materials which can convert heat into electrical energy. Thermoelectric materials are often used for applications such as power generation or refrigeration. Because of the applications for thermoelectric materials, it is important to understand the electrical-to-thermal coupling behavior of such materials. The thermoelectric materials simulated are 2D film configurations of Tin Selenide (SnSe). Using the derivations for non-equilibrium electron-phonon dynamics as well as obtaining the phonon dispersions, second-order and third-order elastic constants, the thermoelectric properties can be calculated. For the purposes of this paper, the correlation of thermoelectric properties such as thermopwer, thermal conductivitty, and thermoelectric figure of merit with parameters such as the characteristic length of the 2D material as well as the applied voltages of 0 V/m, 10,000 V/m, and 20,000 V/m over the 2D material. Furthermore, an analysis on the effect of strain on the thermoelectric properties of SnSe is conducted.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Beibei Liang ◽  
Zijun Song ◽  
Minghui Wang ◽  
Lianjun Wang ◽  
Wan Jiang

Graphene/Bi2Te3thermoelectric materials were prepared by spark plasma sintering (SPS) using hydrothermal synthesis of the powders as starting materials. The X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM) were used to investigate the phase composition and microstructure of the as-prepared materials. Electrical resistivity, Seebeck coefficient, and thermal conductivity measurement were applied to analyze the thermoelectric properties. The effect of graphene on the performance of the thermoelectric materials was studied. The results showed that the maximum dimensionless figure of merit of the graphene/Bi2Te3composite with 0.2 vol.% graphene was obtained at testing temperature 475 K, 31% higher than the pure Bi2Te3.


Sign in / Sign up

Export Citation Format

Share Document