Microstructure and Elevated Temperature Flow Properties of Rapidly Solidified TiAl-Base Alloys

1988 ◽  
Vol 133 ◽  
Author(s):  
J. A. Graves ◽  
A. K. Ghosh

ABSTRACTRapid solidification processing (RSP) of TiAl-base alloys often results in the formation of metastable crystalline products (e.g., Ti3Al) A key parameter controlling both the solidification pathway and the stability of the metastable structure is alloy chemistry. This study focuses upon the influence of minor alloy additions on the microstructure and properties of Ti52Al48 alloys produced by RSP. While alloys having minor Ta addi ions (<1 at.%) maintain near-equilibrium solidification structures similar to the binary alloy, the addition of Cr at a level of 5 at.% results in a nearly 100 vol.% metastable Ti3Al structure containing a fine dispersion of TiCr2 grain boundary precipitates. These precipitates limit grain growth during elevated temperature exposure, maintaining the fine (TiAl) grain size created during decomposition of the metastable product structure. Mechanical property evaluation of the consolidated RSP material indicates a greatly reduced flow stress for the fine grained Cr modified alloys. A preliminary analysis attributes this to the reduction in grain size and enhanced elevated temperature diffusion rates for the Cr containing TiAl-base alloys.

2013 ◽  
Vol 328 ◽  
pp. 784-788
Author(s):  
Sang An Ha ◽  
Shun Myung Shin ◽  
Jung Yeul Yun ◽  
Jei Pil Wang

There have been many studies on the oxidation of pure iron and steel at different temperatures and pressures. D. Caplan et al. demonstrated the effect of cold-work and metal grain size on the oxidation rate of iron. It was concluded that the oxidation rate of iron was accelerated with temperature, cold-work, and increased oxygen pressure, while the oxidation rate of iron, coarse-or fine-grained, cold-worked or annealed, was found to be the same at the FeO-forming temperature range [1-3].


1996 ◽  
Vol 11 (3) ◽  
pp. 657-662 ◽  
Author(s):  
J. Wolfenstine ◽  
T. R. Armstrong ◽  
W. J. Weber ◽  
M. A. Boling-Risser ◽  
K. C. Goretta ◽  
...  

Compressive creep behavior of fine-grained (5 μm) La0.9Sr0.1MnO3with a relative theoretical density between 85 and 90% was investigated over the temperature range 1150–1300 °C in air. The fine grain size, brief creep transients, stress exponent close to unity, and absence of deformation-induced dislocations, suggested that the deformation was controlled by a diffusional creep mechanism. The activation energy for creep of La0.9Sr0.1MnO3was 490 kJ/mole. A comparison of the activation energy for creep of La0.9Sr0.1MnO3with existing diffusion and creep data for perovskite oxides suggested that the diffusional creep of La0.9Sr0.1MnO3was controlled by lattice diffusion of the cations, either lanthanum or manganese.


2021 ◽  
Vol 807 ◽  
pp. 140873
Author(s):  
F. Khodabakhshi ◽  
A.P. Gerlich ◽  
D. Verma ◽  
M. Nosko ◽  
M. Haghshenas

2021 ◽  
Vol 83 (4) ◽  
Author(s):  
S. Adam Soule ◽  
Michael Zoeller ◽  
Carolyn Parcheta

AbstractHawaiian and other ocean island lava flows that reach the coastline can deposit significant volumes of lava in submarine deltas. The catastrophic collapse of these deltas represents one of the most significant, but least predictable, volcanic hazards at ocean islands. The volume of lava deposited below sea level in delta-forming eruptions and the mechanisms of delta construction and destruction are rarely documented. Here, we report on bathymetric surveys and ROV observations following the Kīlauea 2018 eruption that, along with a comparison to the deltas formed at Pu‘u ‘Ō‘ō over the past decade, provide new insight into delta formation. Bathymetric differencing reveals that the 2018 deltas contain more than half of the total volume of lava erupted. In addition, we find that the 2018 deltas are comprised largely of coarse-grained volcanic breccias and intact lava flows, which contrast with those at Pu‘u ‘Ō‘ō that contain a large fraction of fine-grained hyaloclastite. We attribute this difference to less efficient fragmentation of the 2018 ‘a‘ā flows leading to fragmentation by collapse rather than hydrovolcanic explosion. We suggest a mechanistic model where the characteristic grain size influences the form and stability of the delta with fine grain size deltas (Pu‘u ‘Ō‘ō) experiencing larger landslides with greater run-out supported by increased pore pressure and with coarse grain size deltas (Kīlauea 2018) experiencing smaller landslides that quickly stop as the pore pressure rapidly dissipates. This difference, if validated for other lava deltas, would provide a means to assess potential delta stability in future eruptions.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 653
Author(s):  
Shereef Bankole ◽  
Dorrik Stow ◽  
Zeinab Smillie ◽  
Jim Buckman ◽  
Helen Lever

Distinguishing among deep-water sedimentary facies has been a difficult task. This is possibly due to the process continuum in deep water, in which sediments occur in complex associations. The lack of definite sedimentological features among the different facies between hemipelagites and contourites presented a great challenge. In this study, we present detailed mudrock characteristics of the three main deep-water facies based on sedimentological characteristics, laser diffraction granulometry, high-resolution, large area scanning electron microscopy (SEM), and the synchrotron X-ray diffraction technique. Our results show that the deep-water microstructure is mainly process controlled, and that the controlling factor on their grain size is much more complex than previously envisaged. Retarding current velocity, as well as the lower carrying capacity of the current, has an impact on the mean size and sorting for the contourite and turbidite facies, whereas hemipelagite grain size is impacted by the natural heterogeneity of the system caused by bioturbation. Based on the microfabric analysis, there is a disparate pattern observed among the sedimentary facies; turbidites are generally bedding parallel due to strong currents resulting in shear flow, contourites are random to semi-random as they are impacted by a weak current, while hemipelagites are random to oblique since they are impacted by bioturbation.


1987 ◽  
Vol 33 (115) ◽  
pp. 274-280 ◽  
Author(s):  
David M. Cole

AbstractThis paper presents and discusses the results of constant deformation-rate tests on laboratory-prepared polycrystalline ice. Strain-rates ranged from 10−7to 10−1s−1, grain–size ranged from 1.5 to 5.8 mm, and the test temperature was −5°C.At strain-rates between 10−7and 10−3s−1, the stress-strain-rate relationship followed a power law with an exponent ofn= 4.3 calculated without regard to grain-size. However, a reversal in the grain-size effect was observed: below a transition point near 4 × 10−6s−1the peak stress increased with increasing grain-size, while above the transition point the peak stress decreased with increasing grain-size. This latter trend persisted to the highest strain-rates observed. At strain-rates above 10−3s−1the peak stress became independent of strain-rate.The unusual trends exhibited at the lower strain-rates are attributed to the influence of the grain-size on the balance of the operative deformation mechanisms. Dynamic recrystallization appears to intervene in the case of the finer-grained material and serves to lower the peak stress. At comparable strain-rates, however, the large-grained material still experiences internal micro-fracturing, and thin sections reveal extensive deformation in the grain-boundary regions that is quite unlike the appearance of the strain-induced boundary migration characteristic of the fine-grained material.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
B. M. Praveen ◽  
T. V. Venkatesha

Zn-Fe alloy electrodeposition was carried out in the presence of condensation product 2-{[(1E)-(3,4-dimethoxyphenyl)methylidene]amino}-3-hydroxypropanoic acid formed between veratraldehyde and serine in acid sulphate bath. Hull cell was used for optimizing the operating parameters and bath constituents. During deposition, the potential was shifted towards cathodic direction in the presence of addition agents and brightener. The polarization studies show that deposition taking place in basic bath and optimum bath was 1.08 and 1.15 V, respectively. Current efficiency and throwing power were reached around 85% and 26%, respectively. The SEM images of bright deposit indicated its fine-grained nature and appreciable reduction in the grain size. XRD studies have showed that the grain size of the deposit generated from optimum bath was 16 nm. UV-visible spectroscopic studies confirm the formation of complex between metal ion and brightener.


2015 ◽  
Vol 625 ◽  
pp. 296-302 ◽  
Author(s):  
Mladen-Mateo Primorac ◽  
Manuel David Abad ◽  
Peter Hosemann ◽  
Marius Kreuzeder ◽  
Verena Maier ◽  
...  

2010 ◽  
Vol 638-642 ◽  
pp. 2389-2394 ◽  
Author(s):  
Masahide Gotoh ◽  
Katsuhiro Seki ◽  
M. Shozu ◽  
Hajime Hirose ◽  
Toshihiko Sasaki

The fine-grained rolling steels NFG600 and the conventional usual rolling steels SM490 were processed by sand paper polishing and mechanical grinding to compare the residual stress generated after processing. The average grain size of NFG600 and SM490 is 3 μm and 15μm respectively. Therefore improvement of mechanical properties for such fine-grained steels is expected, it is important to understand the residual stress state of new fine-grained materials with processing. In this study, multi axial stresses of two kinds of specimens after polishing and grinding were measured by three kinds of analysis methods including cos-ψ method. As a result, as for σ33, the stress of NFG was compression, though that of SM490 was tension.


Author(s):  
Stephanie Saalfeld ◽  
Thomas Wegener ◽  
Berthold Scholtes ◽  
Thomas Niendorf

AbstractThe stability of compressive residual stresses generated by deep rolling plays a decisive role on the fatigue behavior of specimens and components, respectively. In this regard, deep rolling at elevated temperature has proven to be very effective in stabilizing residual stresses when fatigue analysis is conducted at ambient temperature. However, since residual stresses can be affected not only by plastic deformation but also when thermal energy is provided, it is necessary to analyze the influence of temperature and time on the relaxation behavior of residual stresses at elevated temperature. To evaluate the effect of deep rolling at elevated temperatures on stability limits under thermal as well as combined thermo-mechanical loads, the present work introduces and discusses the results of investigations on the thermal stability of residual stresses in differently deep rolled material conditions of the steel SAE 1045.


Sign in / Sign up

Export Citation Format

Share Document