Microstructures of The Electron-Beam Evaporated InSb Thin Films

1988 ◽  
Vol 135 ◽  
Author(s):  
D.J. Cheng ◽  
S. Yeh ◽  
G.F. Chi

AbstractPolycrystalline InSb thin films have been prepared by the two-source electron-beam evaporation method. The InSb films have been grown on both pure Si (100) substrate and on Si (100) substrate which has been thermally oxidized to form a thin amorphous SiOx overlayer. The as-grown thin films have been heat treated under N2 atmosphere which is slightly mixed with air. A thin InOx layer is formed on the top surface of the thin film.After heat treatment, the InSb films grown on the oxidized Si substrate shows a preferred (111) orientation. While the films grown on Si substrate do not show such preferred orientation as evidenced by the X-ray diffraction patterns.The TEM cross sectional morphologies of the InSb film grown on oxidized Si substrate shows an ordered arrangement of the grains. While the film grown on the pure Si substrate shows a random arrangement of the grains. The film grown on the oxidized Si substrate also shows the existence of the twin boundary and an ordered arrangement of the precipitation of the second phase.

1988 ◽  
Vol 135 ◽  
Author(s):  
S. Yeh ◽  
D. J. Cheng ◽  
G. F. Chi ◽  
M. T. Chu

AbstractPolycrystalline InSb thin films have been prepared by the two-source thermal co-evaporation method. The InSb films have been grown on both pure Si (100) substrate and on Si (100) substrate which has been thermally oxidized to form a thin amorphous SiOx overlayer. The as-grown films have been heat treated under N2 atmosphere at different temperatures ranged from 520 to 535 C. Both as-grown films have (220) diffraction as the main peak. The heat treated films which have high mobility values show the (111) preferred orientation. For the heat treated film on oxidized Si substrate, the TEM cross sectional morphologies show the existence of the precipitaion of the second phase and the interface diffusion of InSb into the SiOx layer.


2011 ◽  
Vol 254 ◽  
pp. 50-53 ◽  
Author(s):  
Tatsuya Ishii ◽  
Hideyuki Homma ◽  
Shigeo Yamaguchi

We fabricated a thin film Peltier device based on an InSb film and a SbTe film. N-type InSb thin films were grown on sapphire (0001) substrate with InAsSb buffer layer by metalorganic vapor phase epitaxy, and P-type SbTe thin films were deposited on the substrate by electron beam evaporation. N-type and P-type films were separated on the substrate, and between them, a Au thin film was deposited by direct-current sputtering. We observed partial Peltier effect in the device.


2016 ◽  
Vol 8 (1) ◽  
pp. 21-28 ◽  
Author(s):  
M. K. Hasan ◽  
M. N. A. Shafi ◽  
M. N. A. Siddiquy ◽  
M. A. Rahim ◽  
M. J. Islam

Nickel (Ni) thin films in the thickness range 50?80 nm have been prepared by electron beam evaporation method at a base pressure of 4x10-5 mbar on silicon and glass substrates. Some samples have been annealed at 573 K for 1.5 h in open air. The resistivity of Ni films on silicon substrate is higher than the resistivity of Ni films on glass substrate. The TCR of Ni films is found to be positive which indicates that the Ni samples are metallic in nature. Coercivity of Ni films increases with increasing film thickness. The coercivity of 80 nm as-deposited Ni film on glass substrate is found to be ~ 9 Oe. The rms value of the surface roughness of 150 nm as-deposited Ni film on glass substrate is ~12 nm and it becomes ~ 7 nm after annealing. On the other hand, the coercivity of 90 nm and 160 nm as-deposited Ni films on silicon substrate are 50 Oe and 85 Oe, respectively. The rms value of surface roughness of 120 nm as-deposited Ni film on Si substrate is ~ 16 nm. It becomes ~ 3 nm after annealing.


1990 ◽  
Vol 202 ◽  
Author(s):  
P. W. Wang ◽  
S. Yeh ◽  
L. Chang

ABSTRACTPolycrystalline InSb thin films have been prepared by two-source thermal evaporation method. The as-deposited randomly oriented thin films develop (111) preferred orientation upon heat treatment of different maximum setting temperatures, T(max)s. Under different T(max)s, the elongate (111) grains rotate gradually the direction of the elongation respect to the thermally oxidized Si(100) substrate.The (111) preferred orientation has been seen from both cross-sectional TEM and X-ray diffraction patterns. The electrical mobility value of the thin film has been measured by the Van der Pauw′s method. A dramatic increase in the electrical mobility from few thousands, for the as-deposited film, to intermediate values of 15,000-30,000 cm2/v-s and the highest value of 36,000 cm2/v-s for thin films subjected to different T(max)s, can be correlated well to the corresponding microstruetures.


2005 ◽  
Vol 239 (3-4) ◽  
pp. 327-334 ◽  
Author(s):  
Ming Zhu ◽  
Peng Chen ◽  
Ricky K.Y. Fu ◽  
Weili Liu ◽  
Chenglu Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document