Structures of Nb/Al2O3 Interfaces Produced by Different Experimental Routes

1990 ◽  
Vol 183 ◽  
Author(s):  
J. Mayer ◽  
W. Mader ◽  
D. Knauss ◽  
F. Ernst ◽  
M. Rühle

AbstractNb/Al2O3 interfaces were produced by (i) diffusion bonding of single crystalline Nb and Al2O3 at 1973 K, (ii) internal oxidation of a Nb-3at.% Al alloy at 1773 K, and (iii) molecular beam epitaxy (MBE) growth of 500 nm thick Nb overlayers on sapphire substrates at 1123 K. Cross-sectional specimens were prepared and studied by conventional (CTEM) and high resolution transmission electron microscopy (HREM). The orientation relationships between Nb and Al2O3 were identified by diffraction studies. HREM investigations revealed the structures of the different interfaces including the presence of misfit dislocations at or near the interface. The results for the different interfaces are compared.

1992 ◽  
Vol 263 ◽  
Author(s):  
A.E.M. de Veirman ◽  
F. Hakkens ◽  
W. Coene ◽  
F.J.A. Den Broeder

ABSTRACTThe results of a transmission electron microscopy study of Co/Au and Co/Pd multilayers are reported. Special emphasis is put on the epitaxial growth and the relaxation of the misfit strain of these high misfit systems. In bright-field cross-sectional images, periodic contrast fringes are observed at the interfaces, which are the result of Moiré interference and which allow determination of the degree of misfit relaxation at the interface. It was established that 80-85% of the misfit is relaxed. From high resolution electron microscopy images the Burgers vector of the misfit dislocations was derived, being a/2<110> lying in the (111) interface plane. The results obtained for the Co/Au and Co/Pd multilayers will be discussed in comparison with those obtained for a bilayer of Co and Au.


1990 ◽  
Vol 216 ◽  
Author(s):  
S.G. Lawson-Jack ◽  
I.P. Jones ◽  
D.J. Williams ◽  
M.G. Astles

ABSTRACTTransmission electron microscopy has been used to assess the defect contents of the various layers and interfaces in (CdHg) Te heterostructures. Examination of cross sectional specimens of these materials suggests that the density of misfit dislocations at the interfaces is related to the layer thicknesses, and that the high density of dislocations which are generated at the GaAs/CdTe interface are effectively prevented from penetrating into the CdHgTe epilayer by a 3um thick buffer layer. The majority of the dislocations in the layers were found to have a Burgers vector b = a/2<110> and either lie approximately parallel or inclined at an angle of ∼ 60° to the interfacial plane.


1986 ◽  
Vol 77 ◽  
Author(s):  
L. Salamanca-Young ◽  
D. L. Partin ◽  
J. Heremans ◽  
E. M. Dresselhaus

ABSTRACTHigh resolution transmission electron microscopy has been used to study the structure of PbTe/Pb1-zEuxSeyTe1-v semiconductor superlattices and heterojunctions grown on BaF2 substrates by molecular beam epitaxy. The objective of this study is to analyze the interface sharpness and the structural perfection of the samples at their interfaces. In the PbTe/Pb1-zEuxSeyTe1-v system, we have observed misfit dislocations and even amorphous regions for high Eu concentrations. We have also observed two directions of growth of the superlattice film. The interface appears to be sharp to approximately three monolayers. A model for the superlattice structure is suggested and used to obtain simulated images using computing methods. The simulated images are compared with those obtained experimentally.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3645
Author(s):  
Liyao Zhang ◽  
Yuxin Song ◽  
Nils von den Driesch ◽  
Zhenpu Zhang ◽  
Dan Buca ◽  
...  

The structural properties of GeSn thin films with different Sn concentrations and thicknesses grown on Ge (001) by molecular beam epitaxy (MBE) and on Ge-buffered Si (001) wafers by chemical vapor deposition (CVD) were analyzed through high resolution X-ray diffraction and cross-sectional transmission electron microscopy. Two-dimensional reciprocal space maps around the asymmetric (224) reflection were collected by X-ray diffraction for both the whole structures and the GeSn epilayers. The broadenings of the features of the GeSn epilayers with different relaxations in the ω direction, along the ω-2θ direction and parallel to the surface were investigated. The dislocations were identified by transmission electron microscopy. Threading dislocations were found in MBE grown GeSn layers, but not in the CVD grown ones. The point defects and dislocations were two possible reasons for the poor optical properties in the GeSn alloys grown by MBE.


Author(s):  
K.T. Chang ◽  
J.H. Mazur ◽  
R. Fathauer

Chromium disilicide is a semiconductor with a 0.3 eV bandgap. It has potential for applications in Si based infrared detectors. The CrSi2/Si system is a good candidate for epitaxy because of the low 0.1% lattice mismatch between the basal plane of CrSi2 and the (111) Si surface. Previous studies have reported that the growth of CrSi2 on (111) Si occurs as islands with orientation relationship. The work reported here is an extension of this previous study.In the present experiments, both (111) Si and 4°-off (111) Si were used as a substrates. After co-deposition of Cr and Si at room temperature in a MBE chamber, the deposited films was annealed in the same chamber at temperatures up to 720°C. Transmission electron microscopy diffraction and imaging were used to study the structure and morphology of the deposited films.


2004 ◽  
Vol 19 (5) ◽  
pp. 1413-1416 ◽  
Author(s):  
G.H. Cao ◽  
P. Simon ◽  
W. Skrotzki

A YNi2B2C thin film deposited on MgO(001) substrate by pulsed laser deposition has been investigated by transmission electron microscopy (TEM). Cross-sectional TEM analyses show that the YNi2B2C film grows in the [001] direction. Y2O3 exists not only as an interlayer at the interface of the YNi2B2C thin film and the MgO substrate but occasionally also in the YNi2B2C thin film near the substrate. The orientation relationships between the YNi2B2C thin film, Y2O3 interlayer, and MgO substrate are determined from electron-diffraction patterns to be MgO(001)[100] ‖ Y2O3(001)[100], YNi2B2C(001)[110] ‖ Y2O3(001)[100] ‖ Y2O3(001)[100, and YNi2B2C(001)[100] ‖ Y2O3(001)[100 1.5‖ Y2O3(001)[100] ‖ Y2O3(001)[100 (the numeral above the “parallel” symbol represents the misorientation (in degrees) between the [100] ‖ Y2O3(001)[100 directions).


1997 ◽  
Vol 12 (8) ◽  
pp. 2143-2151 ◽  
Author(s):  
A. Rečnik ◽  
D. L. Carroll ◽  
K. A. Shaw ◽  
D. M. Lind ◽  
M. Rühle

Superlattices of Fe3O4–NiO layers have been studied by high-resolution transmission electron microscopy (HRTEM). These superlattices are grown by oxygen-plasma-assisted molecular-beam epitaxy (MBE) on (001) oriented MgO substrates, and exhibit a high degree of ordering at the interfaces between the interlayers. The lack of misfit dislocations at the Fe3O4–NiO interfaces suggeststhat lattice strain is largely accommodated by changes in the lattice spacing. By quantitative HRTEM analysis of Fe3O4–NiO interfaces, possible atomic models are discussed, having implications in magnetic ordering and spin exchange mechanisms for such interlayer systems.


1987 ◽  
Vol 91 ◽  
Author(s):  
T. L. Lin ◽  
L. Sadwick ◽  
K. L. Wang ◽  
S. S. Rhee ◽  
Y. C Kao ◽  
...  

ABSTRACTGaAs layers have been grown on porous silicon (PS) substrates by molecular beam epitaxyNo surface morphology deterioration was observed onGaAs-on-PS layers in spite of the roughness of PS. A 10% Rutherford backscattering spectroscopy (RBS) channeling minimum yield for GaAs-on-PS layers as compared to 16% for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy (TEM) reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers.


Sign in / Sign up

Export Citation Format

Share Document