Excimer Laser Crystallized Amorphous Silicon Films: Effects of Shot Density and Substrate Temperature

1991 ◽  
Vol 219 ◽  
Author(s):  
R. I. Johnson ◽  
G. B. Anderson ◽  
S. E. Ready ◽  
J. B. Boyce

ABSTRACTLaser crystallization of a-Si thin films has been shown to produce materials with enhanced electrical properties and devices that are faster and capable of carrying higher currents. The quality of these polycrystalline films depends on a number of parameters such as laser energy density, shot density, substrate temperature, and the quality of the starting material. We find that the average grain size and transport properties of laser crystallized amorphous silicon films increase substantially with laser energy density, increase only slightly with laser shot density, and are unaffected by substrate temperatures of up to 400°C. The best films are those processed in vacuum but films of fair quality can also be obtained in air and nitrogen atmospheres.

1994 ◽  
Vol 336 ◽  
Author(s):  
P. Mei ◽  
G. B. Anderson ◽  
J. B. Boyce ◽  
D. K. Fork ◽  
M. Hack ◽  
...  

ABSTRACTThe combination of a-Si low leakage pixel TFTs with poly-Si TFTs in peripheral circuits provides an excellent method for reducing the number of external connections to large-area imaging arrays and displays. To integrate the fabrication of the peripheral poly-Si TFTs with the a-Si pixel TFTs, we have developed a three-step laser process which enables selective crystallization of PECVD a-Si:H. X-ray diffraction and transmission electron microscopy show that the polycrystalline grains formed with this three-step process are similar to those crystallized by a conventional one step laser crystallization of unhydrogenated amorphous silicon. The grain size increases with increasing laser energy density up to a peak value of a few Microns. The grain size decreases with further increases in laser energy density. The transistor field effect mobility is correlated with the grain size, increasing gradually with laser energy density until reaching its maximum value. Thereafter, the transistors suffer from leakage through the gate insulators. A dual dielectric gate insulator has been developed for these bottom-gate thin film transistors to provide the correct threshold voltages for both a-Si and poly-Si TFTs.


1994 ◽  
Vol 7 (6) ◽  
pp. 435-437 ◽  
Author(s):  
S F Xu ◽  
Y J Tian ◽  
H S Lu ◽  
D F Cui ◽  
Z H Chen ◽  
...  

1992 ◽  
Vol 283 ◽  
Author(s):  
H. J. Kim ◽  
James S. Im ◽  
Michael O. Thompson

ABSTRACTUsing planar view transmission electron microscope (TEM) and transient reflectance (TR) analyses, we have investigated the excimer laser crystallization of amorphous silicon (a-Si) films on SiO2. Emphasis was placed on characterizing the microstructures of the single-shot irradiated materials, as a function of the energy density of the laser pulse and the temperature of the substrate. The dependence of the grain size and melt duration as a function of energy density revealed two major crystallization regimes. In the low energy density regime, the average grain size first increases gradually with increases in the laser energy density. In the high energy density regime, on the other hand, a very fine grained microstructure, which is relatively insensitive to variations in the laser energy density, is obtained. In addition, we have discovered that at the transition between these two regimes an extremely small experimental window exists, within which an exceedingly large grain-sized polycrystalline film is obtained. We suggest a liquid phase growth model for this phenomenon, which is based on the regrowth of crystals from the residual solid islands at the oxide interface.


Author(s):  
Gary J. Cheng ◽  
Daniel Pirzada ◽  
Pankaj Trivedi ◽  
David Field

Scanning electron microscopy and high-resolution electron backscatter diffraction (EBSD) have been used to study the texture and microstructure evolution during the crystallization of initially amorphous GaAs thin films. A KrF excimer laser, with 30 ns pulse duration was used for crystallization of a-GaAs grown on SiO2 Substrate using molecular beam epitaxy (MBE) technique. The effect of laser energy density and film thickness on grain morphology has been studied. The integrated information on grain size distribution, preferred orientation, and nature of grain boundaries provides useful information to postulate the mechanism of grain-growth and likely role of different contributing parameters in the evolution of final texture under the highly transient processing conditions prevailing during the short laser irradiation. The results show that for thick films the laser crystallization results in a weak <111> fiber texture. While for a thinner films the grains have a strong <001> texture that strengthens with a decrease in film thickness and increase in laser energy density.


2001 ◽  
Vol 664 ◽  
Author(s):  
Tadashi Watanabe ◽  
Hajime Watakabe ◽  
Toshiyuki Sameshima

ABSTRACTIn this study, the carrier mobility and density for solid phase crystallized (SPC) silicon films fabricated at 600 °C for 48 hours are analyzed by free carrier optical absorption. The carrier mobility is 40 cm2/Vs for SPC films doped with 6×1019-cm−3-phosphorus atoms. This analysis suggests the SPC films have fine crystalline grains closed to single crystalline silicon. In addition, initial carrier density was 3×1019 cm−3, which increased to 6×1019 cm−3by XeCl excimer laser irradiation of 500mJ/cm2. The inactivated regions in SPC films are reduced by laser irradiation. However, the electrical conductivity after laser irradiation for SPC films doped with 6×1018-cm−3-phosphorus atoms decreased from 3.3 to 0.018 S/cm as laser energy density increased to 500mJ/cm2. On the other hand, the electrical conductivity increased from 14.7 to 31.3 S/cm with similar increase of laser energy density after H2O vapor heat treatment at 260°C for 3 hours with 1.3 MPa. Furthermore, the characteristics of n-channel TFTs fabricated with initial SPC films as well as SPC films which was irradiated by laser at 425mJ/cm2 are also researched. The threshold voltage is decreased from 3.8 to 2.0 V by laser irradiation. Threshold voltages of both cases are decreased from 3.8 to 2.4 V for no-laser irradiation and from 2.0 to 0.8 V for laser irradiation, after H2O vapor heat treatment at 310°C for 1 hour with 9.0MPa. Based on the above trial, the defect reduction method combining laser irradiation and H2O vapor heat treatment has proved to be very effective for SPC films and SPC TFTs.


1992 ◽  
Vol 283 ◽  
Author(s):  
R. Carluccio ◽  
A. Pecora ◽  
G. Fortunato ◽  
J. Stoemenos ◽  
N. Economou

ABSTRACTExcimer laser crystallization of hydrogenated amorphous silicon has been investigated as a function of substrate temperature. At low substrate temperatures hydrogen out-diffusion strongly influences the film morphology, while at 420 °C homogeneous recrystallized films are obtained, as a result of the reduced solidification velocity. This process has been successfully tested by fabricating with the recrystalllized material thin-film transistors according to the bottom-gate configuration.


1998 ◽  
Vol 536 ◽  
Author(s):  
T. Sameshima

AbstractFundamental properties of silicon films crystallized by a 30-ns-pulsed XeCI excimer laser were discussed. Although crystallization of 50-nm thick silicon films formed on quartz substrates occurred through laser hearing at the crystalline threshold energy density of 160 mJ/cm2, a higher laser energy density at 360 mJ/cm2 was necessary to crystallize silicon films completely. Analyses of free carrier optical absorption revealed that phosphorus-doped silicon films with a carrier density about 2×1020 cm−3 had a high carrier mobility of 20 cm2/Vs for irradiation at the crystallization threshold energy density, while Hall effect measurements gave a carrier mobility of electrical current traversing grain boundaries of 3 cm2/Vs. This suggested that the crystalline grains had good electrical properties. As the laser energy density increased to 360 mJ/cm2 and laser pulse number increased to 5, the carrier mobility obtained by the Hall effect measurements markedly increased to 28 cm2/Vs because of improvement of grain boundary properties, while the carrier mobility obtained by analysis of free carrier absorption increased to 40 cm2/Vs. A post annealing method at 190°C with high-pressure H2O vapor was developed to reduce the density of defect states. Increase of carrier mobility to 500 cm2/Vs was demonstrated in the polycrystalline silicon thin film transistors fabricated in laser crystallized silicon films.


1989 ◽  
Vol 157 ◽  
Author(s):  
R.Z. Bachrach ◽  
K. Winer ◽  
J.B. Boyce ◽  
F.A. Ponce ◽  
S.E. Ready ◽  
...  

ABSTRACTUsing a suitably homogenized excimer laser beam, we have shown that the threshold for crystallization of amorphous silicon is well defined and exhibits a square root dependence on the laser energy density above threshold. This sharp threshold behavior can be exploited in a number of ways.


Sign in / Sign up

Export Citation Format

Share Document