Ir Radiation Transient Annealing of Silicon Implanted Si Gallium Arsenide

1983 ◽  
Vol 23 ◽  
Author(s):  
A. Ezis ◽  
Y. K. Yeo ◽  
Y. S. Park

ABSTRACTThe electrical properties of IR radiation transient annealed Si implanted semi-insulating GaAs are presented for 100 keV ion doses from 3 × 1012 to 3 × 1014 cm−2. For wafers implanted with 3 × 1012 cm−2 doses, suitable for FET channel layers, carrier concentration and drift mobility profiles were determined from C-V and transconductance measurements on fat FET structures. Optimum electrical activation and carrier concentration profiles were obtained for peak pulse temperatures of 930–950°C. Van der Pauw measurements were made on substrates implanted with Si doses ≥ 1 × 1013 cm−2 to determine sheet carrier concentration and Hall mobility. The peak pulse temperature required to give optimum activation efficiency is found to increase with dose. The results presented here demonstrate that undoped substrates are preferable to Cr-doped substrates for low dose device applications.

1983 ◽  
Vol 23 ◽  
Author(s):  
D.H. Rosenblatt ◽  
W.R. Hitchens ◽  
S. Shatas ◽  
A. Gat ◽  
D.A. Betts

ABSTRACTHeatpulse rapid thermal annealing was used to activate Si implants of 3.5 × 1012cm−2 at 100 keV and 1.0 × 1013 and 1.0 × 1014cm−2 at 200 keV into semi-insulating GaAs. The effects of Si3N4 encapsulation, anneal temperature and time, and substrate Cr-doping level were investigated. The annealed samples were characterized with C-V, Van der Pauw, differential Hall, and SIMS measurements. Conventional furnace anneals were carried out for comparison, and in all cases, Heatpulse anneals produced sharper carrier concentration profiles. 84% electrical activation was obtained for the 200 keV, 1.0 × 1013 cm−2 implant after a 950°C, 5 sec. Heatpulse anneal. Capped Heatpulse anneals produced less Cr depletion from the implanted region than furnace anneals.


1989 ◽  
Vol 147 ◽  
Author(s):  
W. D. Fan ◽  
W. Y. Wang

AbstractMolecular ion S2+ and SiFn+ implantations into GaAs have been investigated to form very thin active layers. After implantation, the transient annealing (TA) and furnace annealing (FA) were used. The measurements of activation efficiency, mobility, carrier concentration profiles and PL spectra were carried out. The experiments show that after TA, the activation efficiency, mobility and carrier distribution are almost the same between samples implanted with S+ at an energy of 50KeV to a dose of 3×1013cm−2 and S+2 at 100KeV to 1.5×1013cm−2. It shows that the damage of S2-implanted samples can be removed by TA, and a very thin active layer can be formed by the implantation of S2+ at 50KeV. For SiFn-implanted samples, the activation efficiency and mobility. decrease with increase of the implanted ion mass. As+ co-implantation into SiF-implanted samples has been used to improve both activation efficiency and mobility. After comparison with the properties of the SiFt implantation, S2+implantation is more acceptable to form thin active layers.


2006 ◽  
Vol 955 ◽  
Author(s):  
Masataka Satoh ◽  
T Saitoh ◽  
K Nomoto ◽  
T Nakamura

ABSTRACTThe sheet resistance and sheet carrier concentration for Si ion implanted GaN have been investigated as a function of Si ion dosages and ion's energy using van der Pauw method and Hall effect measurement. Si ion implanted GaN is annealed at 1200 °C for 10 sec in N2 gas flow with 50 nm-thick SiNx cap layer to avoid dissociation of GaN. For Si ion energy of 30 keV, the sheet resistance is decreased from 103 to 56 ohm/sq. for the dose ranging from 1 × 1014 to 2 × 1015/cm2. For the Si dose larger than 2 × 1015/cm2, the sheet carrier concentration is saturated around 1 ×s 1015/cm2. Si ion implanted GaN with energy of 50, 80, and 120 keV at a dose of 2 × 1015/cm2 also reveal the sheet carrier concentration of about 1 × 1015/cm2 with the decrease of electron mobility. It is suggested that the implanted Si donors are strongly compensated by the residual implantation-induced defects.


1987 ◽  
Vol 92 ◽  
Author(s):  
S.G. Liu ◽  
S.Y. Narayan ◽  
C.W. Magee ◽  
C.P. Wu ◽  
F. Kolondra ◽  
...  

ABSTRACTRapid thermal annealing (4−7s) of 28Si and 9Be implants in VPE-grown In0.53Ga0.47As has produced n- and p-type active layers with controlled doping levels between 1017 and 3×1018 cm−3. The multiple-implant schedules were based on Rp and ΔR data derived from SIMS measurements on single-energy implants. The activated n- and p-type layers have a good surface morphology and 300 K mobilities of 3000–7000 and 100–200 cm2 /V−s, respectively. Data on implant schedules, electrical characteristics, carrier concentration profiles, and Rp /ΔRp information are presented.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 692
Author(s):  
Jong Hyeon Won ◽  
Seong Ho Han ◽  
Bo Keun Park ◽  
Taek-Mo Chung ◽  
Jeong Hwan Han

Herein, we performed a comparative study of plasma-enhanced atomic layer deposition (PEALD) of SnO2 films using Sn(dmamp)2 as the Sn source and either H2O plasma or O2 plasma as the oxygen source in a wide temperature range of 100–300 °C. Since the type of oxygen source employed in PEALD determines the growth behavior and resultant film properties, we investigated the growth feature of both SnO2 PEALD processes and the various chemical, structural, morphological, optical, and electrical properties of SnO2 films, depending on the oxygen source. SnO2 films from Sn(dmamp)2/H2O plasma (SH-SnO2) and Sn(dmamp)2/O2 plasma (SO-SnO2) showed self-limiting atomic layer deposition (ALD) growth behavior with growth rates of ~0.21 and 0.07–0.13 nm/cycle, respectively. SO-SnO2 films showed relatively larger grain structures than SH-SnO2 films at all temperatures. Interestingly, SH-SnO2 films grown at high temperatures of 250 and 300 °C presented porous rod-shaped surface morphology. SO-SnO2 films showed good electrical properties, such as high mobility up to 27 cm2 V−1·s−1 and high carrier concentration of ~1019 cm−3, whereas SH-SnO2 films exhibited poor Hall mobility of 0.3–1.4 cm2 V−1·s−1 and moderate carrier concentration of 1 × 1017–30 × 1017 cm−3. This may be attributed to the significant grain boundary and hydrogen impurity scattering.


2007 ◽  
Vol 556-557 ◽  
pp. 153-156
Author(s):  
Chi Kwon Park ◽  
Gi Sub Lee ◽  
Ju Young Lee ◽  
Myung Ok Kyun ◽  
Won Jae Lee ◽  
...  

A sublimation epitaxial method, referred to as the Closed Space Technique (CST) was adopted to produce thick SiC epitaxial layers for power device applications. In this study, we aimed to systematically investigate surface morphologies and electrical properties of SiC epitaxial layers grown with varying a SiC/Al ratio in a SiC source powder during the sublimation growth using the CST method. It was confirmed that the acceptor concentration of epitaxial layer was continuously decreased with increasing the SiC/Al ratio. The blue light emission was successfully observed on a PN diode structure fabricated with the p-type SiC epitaxial layer. Furthermore, 4H-SiC MESFETs having a micron-gate length were fabricated using a lithography process and their current-voltage performances were characterized.


Sign in / Sign up

Export Citation Format

Share Document