Ion Beam Etching System for Mercury Cadmium Telluride and III-V Compound Semiconductors

1991 ◽  
Vol 236 ◽  
Author(s):  
Geoffrey K. Reeves ◽  
Patrick. W. Leech ◽  
Patrick Bond

AbstractThis paper describes a laboratory built ion beam etching system and its performance when used for etching Hg1-xCdxTe, GaAs and InP. The etching system provides a means for forming device mesas on a wide range of semiconductors without having to resort to wet chemical etches. The system uses a Kaufmann ion source, a rotating platform and two flow controllers to allow the variation of gas ratios and flows.

1997 ◽  
Vol 15 (3) ◽  
pp. 616-621 ◽  
Author(s):  
John V. Hryniewicz ◽  
Y. J. Chen ◽  
Shih Hsiang Hsu ◽  
Chau-Han D. Lee ◽  
Gyorgy A. Porkolab

1981 ◽  
Vol 5 ◽  
Author(s):  
P. A. Lester ◽  
R. Singh ◽  
D.A. Rice ◽  
R. N. Pangborn ◽  
S. Ashok ◽  
...  

ABSTRACTMS and MIS solar cell performance as a function of wet chemical etching history has been studied and correlated with lattice strain obtained from x-ray double-crystal diffraction technique and intragranular surface topography. Dry ion beam etching from a Kaufman ion source is found to damage the surface and radically alter the electrical barrier by introducing donor-like states in the damaged region.


2007 ◽  
Vol 62 (11) ◽  
pp. 1411-1421 ◽  
Author(s):  
Sebastian Patzig ◽  
Gerhard Roewer ◽  
Edwin Kroke ◽  
Ingo över

Solutions consisting of HF - NOHSO4 - H2SO4 exhibit a strong reactivity towards crystalline silicon which is controlled by the concentrations of the reactive species HF and NO+. Selective isotropic and anisotropic wet chemical etching with these solutions allows to generate a wide range of silicon surface morphology patterns. Traces of Ag+ ions stimulate the reactivity and lead to the formation of planarized (polished) silicon surfaces. Analyses of the silicon surface, the etching solution and the gas phase were performed with scanning electron microscopy (SEM), DR/FT-IR (diffusive reflection Fourier transform infra-red), FT-IR, Raman and NMR spectroscopy, respectively. It was found that the resulting silicon surface is hydrogen-terminated. The gas phase contains predominantly SiF4, NO and N2O. Furthermore, NH4+ is produced in solution. The study has confirmed the crucial role of nitrosyl ions for isotropic wet chemical etching processes. The novel etching system is proposed as an effective new way for selective surface texturing of multi- and monocrystalline silicon. A high etching bath service lifetime, besides a low contamination of the etching solution with reaction products, provides ecological and economical advantages for the semiconductor and solar industry.


2021 ◽  
Vol 10 ◽  
pp. 37-46
Author(s):  
G. S. Burkhanov ◽  
◽  
S. A. Lachenkov ◽  
M. A. Kononov ◽  
A. U. Bashlakov ◽  
...  

Changes in the electrical conductivity of a wide range of materials with different crystal-chemical types and electrophysical properties (quartz, glass, molybdenum disulfide, graphite, gold) under continuous proton injection are studied. Film samples of layered MoS2 and graphite compounds were obtained on rough surfaces of glass or quartz by mechanical rubbing of powder. Gold films are formed on glass substrates by magnetron sputtering of a gold target. To create a continuous stream of protons injected into the test sample, a stationary ion source with a cold cathode and a magnetic field forming an ion beam of relatively low intensity was used. The current in the ion beam is up to 1.2 mA, the pressure of hydrogen in the chamber is ~10 – 2 Pa, the energy of hydrogen ions is from 1 to 4 keV. The experimental results indicate that under conditions of continuous proton injection, the electrical conductivity of thin films with a layered structure (MoS2 and graphite) increases sharply (by 4 – 5 orders of magnitude). This effect increases when the temperature decreases from ~ 293 to ~ 77 K, as well as when the number of charges supplied to the sample increases. In the case of continuous injection of protons into massive dielectrics (glass, quartz) and thin films of gold, no noticeable change in electrical conductivity was detected.


1982 ◽  
Vol 21 (Part 2, No. 1) ◽  
pp. L4-L6 ◽  
Author(s):  
Seitaro Matsuo ◽  
Yoshio Adachi

2017 ◽  
Vol 35 (4) ◽  
pp. 587-596 ◽  
Author(s):  
X.P. Zhu ◽  
L. Ding ◽  
Q. Zhang ◽  
Yu. Isakova ◽  
Y. Bondarenko ◽  
...  

AbstractHigh-intensity pulsed ion beam (HIPIB) technology is developed as an advanced manufacturing method for components with improved wear, corrosion and/or fatigue performance, etc. Robust HIPIB equipment with stable repetitive operation, long-lifetime, and easy maintenance are desired for industrial applications, on which stability of ion beam parameters is critical to achieve consistent result of reproducibility. Here, magnetically insulated ion diodes (MIDs) as ion source with durable graphite anode are investigated in a simple self-magnetic field configuration under repetitive operation. Influence of background pressure on ion beam generation and transportation is emphasized since ion beam sources were intrinsically a vacuum-based system. Comparative experiments were conducted on two types of HIPIB equipment, that is, TEMP-6 and TEMP-4M, differing in vacuum packages where turbo-molecular pump or oil diffusion pump was used. Both the HIPIB equipments are operated on a bipolar pulse mode, that is, a first negative pulse of 150–200 kV with pulse duration 450–500 ns to generate anode plasma on explosive electron emission, and a second positive pulse of 200–250 kV with 120 ns to accelerate the ions. Ion beam energy density up to 8 J/cm2 is achievable using MIDs of geometrical focusing configuration, and the total energy, energy density distribution along cross-section, deflection and divergence, and charge neutralization of the ion beams are assessed under background pressures in a wide range of two orders of magnitude, that is, 1–100 mPa. No appreciable change in the parameters is observed up to 50 mPa, and merely a slight increase in the beam deflection from about ±3 mm to about ±4 mm at the focal point over 50 mPa. The stability of ion beam at the varied pressure is mainly facilitated by the higher pressure up to several Pa in anode–cathode gap during plasma generation and good neutralizing effect for ion beam transportation.


Sign in / Sign up

Export Citation Format

Share Document