The Effect of UV Light on IR Absorption in Chemically Vapor Deposited a-SiNx:H Films

1992 ◽  
Vol 284 ◽  
Author(s):  
C. H. Seager ◽  
J. Kanicki

ABSTRACTWe have measured the optical absorption properties of Plasma Enhanced Chemically Vapor Deposited (PECVD) films of hydrogenated amorphous silicon nitride (a-SiNx:H) over the energy range from 0.54 to 2 eV using Photothermal Deflection Spectroscopy (PDS). The near-infrared absorption properties of these films provide a quantitative estimate of the amount of H bonded to Si or N as well as a measure of the the density of electronic gap states due to species like Si dangling bonds. Typical PDS spectra obtained on as-deposited films show a broad absorption tail with a large number of narrow absorption peaks. Using the phase sensitive feature of this spectroscopy we are able to separate nitride-related absorption from that arising from the fused quartz substrates. In addition to the broad, featureless band tail, whose magnitude is quite sensitive to optical excitation with light above ̃3.9 eV, we observe a number of narrow absorption peaks which we identify as overtones of localized vibrational modes. Specifically, we see peaks at 0.82 and 1.20 eV which we identify as the 1st and second harmonics of N-H stretching vibrations, and several other peaks whose origins remain undetermined. Prolonged UV excitation produces no detectable change in these vibrational modes, although large changes are seen in the underlying absorption tail. This reinforces previous suggestions that photoinduced changes in these films do not arise from rearrangement of the bonded hydrogen.

Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3796 ◽  
Author(s):  
Kristjan Leiger ◽  
Juha Matti Linnanto ◽  
Arvi Freiberg

A weak absorption tail related to the Qy singlet electronic transition of solvated chlorophyll a is discovered using sensitive anti-Stokes fluorescence excitation spectroscopy. The quasi-exponentially decreasing tail was, at ambient temperature, readily observable as far as −2400 cm−1 from the absorption peak and at relative intensity of 10−7. The tail also weakened rapidly upon cooling the sample, implying its basic thermally activated nature. The shape of the spectrum as well as its temperature dependence were qualitatively well reproduced by quantum chemical calculations involving the pigment intramolecular vibrational modes, their overtones, and pairwise combination modes, but no intermolecular/solvent modes. A similar tail was observed earlier in the case of bacteriochlorophyll a, suggesting generality of this phenomenon. Long vibronic red tails are, thus, expected to exist in all pigments of light-harvesting relevance at physiological temperatures.


2020 ◽  
Vol 92 (2) ◽  
pp. 20101
Author(s):  
Behnam Kheyraddini Mousavi ◽  
Morteza Rezaei Talarposhti ◽  
Farshid Karbassian ◽  
Arash Kheyraddini Mousavi

Metal-assisted chemical etching (MACE) is applied for fabrication of silicon nanowires (SiNWs). We have shown the effect of amorphous sheath of SiNWs by treating the nanowires with SF6 and the resulting reduction of absorption bandwidth, i.e. making SiNWs semi-transparent in near-infrared (IR). For the first time, by treating the fabricated SiNWs with copper containing HF∕H2O2∕H2O solution, we have generated crystalline nanowires with broader light absorption spectrum, up to λ = 1 μm. Both the absorption and photo-luminescence (PL) of the SiNWs are observed from visible to IR wavelengths. It is found that the SiNWs have PL at visible and near Infrared wavelengths, which may infer presence of mechanisms such as forbidden gap transitions other can involvement of plasmonic resonances. Non-radiative recombination of excitons is one of the reasons behind absorption of SiNWs. Also, on the dielectric metal interface, the absorption mechanism can be due to plasmonic dissipation or plasmon-assisted generation of excitons in the indirect band-gap material. Comparison between nanowires with and without metallic nanoparticles has revealed the effect of nanoparticles on absorption enhancement. The broader near IR absorption, paves the way for applications like hyperthermia of cancer while the optical transition in near IR also facilitates harvesting electromagnetic energy at a broad spectrum from visible to IR.


2010 ◽  
Vol 25 (10) ◽  
pp. 1029-1033
Author(s):  
Shi-Xing XIA ◽  
Chun-Hui YANG ◽  
Chong-Qiang ZHU ◽  
Tian-Hui MA ◽  
Meng WANG ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1373
Author(s):  
Fadis F. Murzakhanov ◽  
Boris V. Yavkin ◽  
Georgiy V. Mamin ◽  
Sergei B. Orlinskii ◽  
Ivan E. Mumdzhi ◽  
...  

Optically addressable high-spin states (S ≥ 1) of defects in semiconductors are the basis for the development of solid-state quantum technologies. Recently, one such defect has been found in hexagonal boron nitride (hBN) and identified as a negatively charged boron vacancy (VB−). To explore and utilize the properties of this defect, one needs to design a robust way for its creation in an hBN crystal. We investigate the possibility of creating VB− centers in an hBN single crystal by means of irradiation with a high-energy (E = 2 MeV) electron flux. Optical excitation of the irradiated sample induces fluorescence in the near-infrared range together with the electron spin resonance (ESR) spectrum of the triplet centers with a zero-field splitting value of D = 3.6 GHz, manifesting an optically induced population inversion of the ground state spin sublevels. These observations are the signatures of the VB− centers and demonstrate that electron irradiation can be reliably used to create these centers in hBN. Exploration of the VB− spin resonance line shape allowed us to establish the source of the line broadening, which occurs due to the slight deviation in orientation of the two-dimensional B-N atomic plains being exactly parallel relative to each other. The results of the analysis of the broadening mechanism can be used for the crystalline quality control of the 2D materials, using the VB− spin embedded in the hBN as a probe.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2036
Author(s):  
Miren Blanco ◽  
Cristina Monteserín ◽  
Nerea Uranga ◽  
Estíbaliz Gómez ◽  
Estíbaliz Aranzabe ◽  
...  

The transport sector is the fastest growing contributor to climate emissions and experiences the highest growth in energy use. This study explores the use of TiO2 nanoparticles for obtaining photocatalytic nanocomposites with improved infrared reflectance properties. The nanocomposites were prepared by dispersing 0–20 wt% of TiO2 nanoparticles in an unsaturated polyester resin. The effect of TiO2 on the curing kinetics was studied by differential scanning calorimetry, showing a significant delay of the curing reactions. The thermal reflectance of the modified resins was characterized by UV-Vis-NIR spectrophotometry, measuring total solar reflectance (TSR). The TiO2 greatly increased the TSR of the resin, due to the reflectance properties of the nanoparticles and the change in color of the modified resin. These nanocomposites reflect a significant part of near-infrared radiation, which can contribute to a reduction of the use of heating, ventilation, and air conditioning. Moreover, the photocatalytic effect of the TiO2 modified nanocomposites was studied by monitoring the degradation of an organic model contaminant in an aqueous medium under UV light, and the reusability of the nanocomposites was studied with 5 cycles. The developed nanocomposites are proposed as a solution for reducing global warming and pollutant emissions.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiaomei Yao ◽  
Xutao Zhang ◽  
Tingting Kang ◽  
Zhiyong Song ◽  
Qiang Sun ◽  
...  

AbstractA simple fabrication of end-bonded contacts InAsSb NW (nanowire) array detector to weak light is demonstrated in this study. The detector is fabricated using InAsSb NW array grown by molecular beam epitaxy on GaAs substrate. The metal-induced gap states are induced by the end-bonded contact which suppresses the dark current at various temperatures. The existence of the interface dipole due to the interfacial gap states enhances the light excitation around the local field and thus upgrades the photoresponsivity and photodetectivity to the weak light. The light intensity of the infrared light source in this report is 14 nW/cm2 which is about 3 to 4 orders of magnitude less than the laser source. The responsivity of the detector has reached 28.57 A/W at room temperature with the light (945 nm) radiation, while the detectivity is 4.81 × 1011 cm·Hz1/2 W−1. Anomalous temperature-dependent performance emerges at the variable temperature experiments, and we discussed the detailed mechanism behind the nonlinear relationship between the photoresponse of the device and temperatures. Besides, the optoelectronic characteristics of the detector clarified that the light-trapping effect and photogating effect of the NWs can enhance the photoresponse to the weak light across ultraviolet to near-infrared. These results highlight the feasibility of the InAsSb NW array detector to the infrared weak light without a cooling system.


2017 ◽  
Author(s):  
K. Max Zhang ◽  
Bo Yang ◽  
Geng Chen ◽  
Jiajun Gu ◽  
James Schwab ◽  
...  

Abstract. DC, also referred to as Delta-C, measures enhanced light absorption of particulate matter (PM) samples at the near-ultraviolet (UV) range relative to the near-infrared range, which has been proposed previously as a woodsmoke marker due to the presence of enhanced UV light absorbing materials from wood combustion. In this paper, we further evaluated the applications and limitations of using DC as both a qualitative and semi-quantitative woodsmoke marker via joint continuous measurements of PM2.5 (by nephelometer pDR-1500) and light-absorptive PM (by 2-wavelength and 7-wavelength Aethalometer®) in three Northeastern U.S. cities/towns including Rutland, VT, Saranac Lake, NY and Ithaca, NY. We compared the pDR-1500 against a FEM PM2.5 sampler (BAM 1020), and identified a close agreement between the two instruments in a woodsmoke-dominated ambient environment. The analysis of seasonal and diurnal trends of DC, BC (880 nm) and PM2.5 concentrations supports the use of DC as an adequate qualitative marker. The strong linear relationships between PM2.5 and DC in both woodsmoke-dominated ambient and plume environments suggest that DC can reasonably serve as a semi-quantitative woodsmoke marker. We proposed a DC-based indicator for woodsmoke emission, which was then shown to exhibit relatively strong linear relationship with heating demand. While we observed reproducible PM2.5-DC relationships in similar woodsmoke-dominated ambient environments, those relationships differ significantly with different environments, and among individual woodsmoke sources. DC correlated much more closely with PM2.5 than EcoChem PAS2000-reported PAH in woodsmoke-dominated ambient environments. Our analysis also indicates the potential for PM2.5-DC relationships to be utilized to distinguish different combustion and operating conditions of woodsmoke sources, and that DC-Heating demand relationships could be adopted to estimate woodsmoke emissions. However, future studies are needed to elucidate those relationships.


2021 ◽  
Author(s):  
Xiaomei Yao ◽  
Xutao Zhang ◽  
Tingting Kang ◽  
Zhiyong Song ◽  
Qiang Sun ◽  
...  

Abstract A simple fabrication of end-bonded contacts InAsSb NW (nanowire) array detector to weak light is demonstrated in this study. The detector is fabricated using InAsSb NW array grown by molecular beam epitaxy on GaAs substrate. The MIGS (metal-induced gap states) is induced by the end-bonded contact which suppresses the dark current at various temperatures. The existence of the interface dipole due to the interfacial gap states enhances the light excitation around the local field, thus upgrade the photo responsivity and photo detectivity to the weak light. The light intensity of the infrared light source in this report is 14 nW/cm2 which is about 3 to 4 orders of magnitude less than the laser source. The responsivity of the detector has reached 28.57 A/W at room temperature with the light (945 nm) radiation, while the detectivity is 4.81×1011 cm·Hz1/2 W−1. Anomalous temperature-dependent performance emerges at the variable temperature experiments, and we discussed the detailed mechanism behind the non-linear relationship between the photoresponse of the device and temperatures. Besides, the optoelectronic characteristics of the detector clarified that the light trapping effect and photogating effect of the NWs can enhance the photoresponse to the weak light across ultraviolet to near-infrared. These results highlight the feasibility of the InAsSb NW array detector to the infrared weak light without a cooling system.


Author(s):  
E. A. Tolkacheva ◽  
V. P. Markevich ◽  
L. I. Murin

The isotopic content of natural silicon (28Si (92.23 %), 29Si (4.68 %) и 30Si (3.09 %)) affects noticeably the shape of IR absorption bands related to the oxygen impurity atoms. In the present work an attempt is undertaken to determine the positions of local vibrational modes (LVMs), related to quasimolecules 28Si16OS29Si and 28Si16OS30Si (OS – substitutional oxygen atom), for the absorption spectra measured at room temperature. An estimation of the isotopic shifts of corresponding modes is done by fitting the shape of the experimentally measured absorption band related to the vacancy–oxygen center in irradiated Si crystals. The LVM isotope shifts are found to be equal 2,2 ± 0.25 cm–1 for 28Si-16OS29Si and 4,3 ± 0,9 см–1 for 28Si-16OS30Si in relation to the basic band due to 28Si-16OS28Si, and the full width at half maximum of the A-center absorption band (28Si-16OS28Si) is 5,3 ± 0.25 cm–1. By means of infrared absorption spectroscopy a clear correlation between the disappearance of the divacancy (V2) in the temperature range 200–275 ºС and appearance of two absorption bands with their maxima at 825.8 and 839.2 cm–1 in irradiated oxygen-rich Si crystals is found. The band positioned at 825.8 cm–1 is assigned to a divacancy-oxygen defect V2O formed via an interaction of mobile V2 with interstitial oxygen (Oi ) atoms. The 839.2 cm–1 band is much more pronounced in neutron irradiated samples as compared to samples irradiated with electrons. We argue that it is related to a trivacancy–oxygen defect (V3O) formed via an interaction of mobile V3 with Oi atoms.


2018 ◽  
Author(s):  
Roberts Lozins ◽  
Dzintars Ozoliņš

AbstractIn this study, yeast, Gram positive and Gram negative bacteria were attached to silicon dioxide microparticles or silica in order to measure their absorbance, also known as physical absorption of light, changes using spectrophotometry. The goal of the study was to determine if spectrophotometry is an effective way to distinguish microorganisms and if microorganisms have an affinity for silicon dioxide since it is a suitable material for the production of prostheses. The experiment was done by examining the light absorption properties of yeast, Gram positive and Gram negative bacteria in a spectrophotometer with and without silicon dioxide microparticles. During the experiment there have been several promising results. First of all, the spectrophotometers presented graphs of yeast were noticeably different from the graphs of both Gram positive and Gram negative bacteria. Secondly, the absorption of light in both Gram positive and Gram negative bacteria at near infrared (700-1500 nm) wavelengths increased when silicon dioxide microparticles were added to the suspension, unlike yeast. When silicon dioxide microparticles were added to yeast, the absorption of light decreased during the whole wavelength interval of the spectrophotometer measurement. The results indicate that spectrophotometry could be used to distinguish yeast from bacteria and possibly bacteria from each other. The results also suggest that silicon dioxide should not be used in the production of prostheses since it could be a favourable material for the development of biofilms.


Sign in / Sign up

Export Citation Format

Share Document