Metallurgical and Electrical Properties of Capped Au-based Metallizations on GaAs

1993 ◽  
Vol 300 ◽  
Author(s):  
X. W. Lin ◽  
A. Piotrowska ◽  
E. Kaminska ◽  
Z. Liliental-Weber ◽  
J. Washburn

ABSTRACTGold-based contacts on GaAs, i.e., Au(Te)/n-GaAs, Au(Ge)/n-GaAs, and Au(Zn)/p- GaAs, were annealed with or without an Al2O3 cap, in order to examine the effects of capping on their metallurgical and electrical properties. Current-voltage measurements showed that ohmic contact can be formed for all the metallizations, except capped Au(Te) which remained nonohmic even after annealing up to 480°C. Transmission electron microscopy and x-ray diffraction observations showed that the reactions between a contact and GaAs can be strongly affected by a capping layer. For all uncapped contacts, annealing generally resulted in growth of Au-Ga compounds and nonuniform contact morphology, whereas capped Au(Ge) and Au(Zn) contacts were stable and retained flat interface with GaAs. Capped Au(Te) was found to be unstable, reacting extensively with GaAs, due to the presence of Te. Electrical data are explained in terms of the doping model for ohmic contact formation.

Author(s):  
Vuong Van Cuong ◽  
Tadashi Sato ◽  
Takamichi Miyazaki ◽  
Tetsuya Meguro ◽  
Seiji Ishikawa ◽  
...  

Abstract The reliability of Ni/Nb ohmic contact on n-type 4H-SiC at 500℃ was investigated. The current-voltage characteristics showed that, while the Ni(50)/Nb(50)/4H-SiC sample without applying the CF4:O2 etching process degraded just after 25-hour and lost ohmic behavior after 50-hour aging, the Ni(75)/Nb(25)/4H-SiC contact undergone CF4:O2 surface treatment still showed excellent stability after aging for 100 hours at 500℃. Though X-ray diffraction results indicated that the chemical compounds remained stable during the aging process, transmission electron microscopy showed that there was a redistribution of the chemical compounds at the interface of the contact after 500℃ aging. The depth distribution of the elements and energy dispersive X-ray analyses revealed that the contribution of carbon agglomeration at the interface accounted for the degradation of the sample without applying the etching process. Whereas the well-controlled excess carbon atoms of the contact undergone CF4:O2 treatment ensured the stability of this contact when operating at high-temperature ambient.


1994 ◽  
Vol 337 ◽  
Author(s):  
X. W. Lin ◽  
J. Watté ◽  
K. Wuyts ◽  
W. Swider ◽  
R.E. Silverans ◽  
...  

ABSTRACTThe structural evolution of Ni/Au/Te/Au contacts on n-GaAs (001) was examined, in correlation with their electrical properties as a function of rapid thermal annealing in the temperature range 350 - 600°C. It was found that heating at temperatures ≥ 550°C results in the formation of ohmic contacts, while contacts annealed at lower temperatures remain nonohmic. Transmission electron microscopy revealed that heating ≥ 450°C leads to extensive reactions between Ni/Au/Te/Au and GaAs and deep spike formation into the GaAs. The major reaction products were identified as NiAs and β-AuGa. Ga2Te3 grains, growing epitaxially on GaAs, were detected only in 550°C annealed samples. Heating to 600°C caused considerable Ga2Te3 loss. Implications of these results concerning the ohmic contact formation mechanism are discussed.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


2002 ◽  
Vol 716 ◽  
Author(s):  
Seok Woo Hong ◽  
Yong Sun Lee ◽  
Ki-Chul Park ◽  
Jong-Wan Park

AbstractThe effect of microstructure of dc magnetron sputtered TiN and TaN diffusion barriers on the palladium activation for autocatalytic electroless copper deposition has been investigated by using X-ray diffraction, sheet resistance measurement, field emission scanning electron microscopy (FE-SEM) and plan view transmission electron microscopy (TEM). The density of palladium nuclei on TaN diffusion barrier increases as the grain size of TaN films decreases, which was caused by increasing nitrogen content in TaN films. Plan view TEM results of TiN and TaN diffusiton barriers showed that palladium nuclei formed mainly on the grain boundaries of the diffusion barriers.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Celia Marcos ◽  
María de Uribe-Zorita ◽  
Pedro Álvarez-Lloret ◽  
Alaa Adawy ◽  
Patricia Fernández ◽  
...  

Chert samples from different coastal and inland outcrops in the Eastern Asturias (Spain) were mineralogically investigated for the first time for archaeological purposes. X-ray diffraction, X-ray fluorescence, transmission electron microscopy, infrared and Raman spectroscopy and total organic carbon techniques were used. The low content of moganite, since its detection by X-ray diffraction is practically imperceptible, and the crystallite size (over 1000 Å) of the quartz in these cherts would be indicative of its maturity and could potentially be used for dating chert-tools recovered from archaeological sites. Also, this information can constitute essential data to differentiate the cherts and compare them with those used in archaeological tools. However, neither composition nor crystallite size would allow distinguishing between coastal and inland chert outcrops belonging to the same geological formations.


2021 ◽  
Vol 19 (1) ◽  
pp. 745-754
Author(s):  
Khoirina Dwi Nugrahaningtyas ◽  
Eddy Heraldy ◽  
Rachmadani ◽  
Yuniawan Hidayat ◽  
Indriana Kartini

Abstract The properties of three types of CoMo/USY catalysts with different synthesized methods have been studied. The sequential and co-impregnation methods followed by activation using calcination and reduction process have been conducted. The properties of the catalysts were examined using Fourier-transform-infrared (FTIR) spectroscopy, X-ray diffraction (XRD) with refinement, and surface area analyzer (SAA). The FTIR spectrum study revealed the enhanced intensity of its Bronsted acid site, and the XRD diffractogram pattern verified the composition of pure metals, oxides, and alloys in the catalyst. The SAA demonstrated the mesoporous features of the catalyst. Scanning electron microscopy showed an irregular particle morphology. Additional analysis using the transmission electron microscopy indicated that the metal has successfully impregnated without damaging the USY structure.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 899
Author(s):  
Murendeni P. Ravele ◽  
Opeyemi A. Oyewo ◽  
Damian C. Onwudiwe

Pure-phase Cu2−xS (x = 1, 0.2) nanoparticles have been synthesized by the thermal decomposition of copper(II) dithiocarbamate as a single-source precursor in oleylamine as a capping agent. The compositions of the Cu2−xS nanocrystals varied from CuS (covellite) through the mixture of phases (CuS and Cu7.2S4) to Cu9S5 (digenite) by simply varying the temperature of synthesis. The crystallinity and morphology of the copper sulfides were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), which showed pure phases at low (120 °C) and high (220 °C) temperatures and a mixture of phases at intermediate temperatures (150 and 180 °C). Covellite was of a spherical morphology, while digenite was rod shaped. The optical properties of these nanocrystals were characterized by UV−vis–NIR and photoluminescence spectroscopies. Both samples had very similar absorption spectra but distinguishable fluorescence properties and exhibited a blue shift in their band gap energies compared to bulk Cu2−xS. The pure phases were used as catalysts for the photocatalytic degradation of tetracycline (TC) under visible-light irradiation. The results demonstrated that the photocatalytic activity of the digenite phase exhibited higher catalytic degradation of 98.5% compared to the covellite phase, which showed 88% degradation within the 120 min reaction time using 80 mg of the catalysts. The higher degradation efficiency achieved with the digenite phase was attributed to its higher absorption of the visible light compared to covellite.


Sign in / Sign up

Export Citation Format

Share Document