Oxide Dispersion in Direct-Cast Gamma TiAl-Based Alloy

1994 ◽  
Vol 364 ◽  
Author(s):  
Toshihiro Hanamura ◽  
Keizo Hashimoto

AbstractThe objective of this study is to evaluate the high temperature behavior of γ TiAl-based alloy sheets containing AI2O3 particles, produced by a combination of vacuum induction melting, use of a CaO crucible, and direct sheet casting, over a wide temperature range. Alumina particles, having a tendency to coagulate during solidification of a TiAl ingot, are finely dispersed due to the disturbance of high frequency induction, and frozen without having enough time to grow in size by direct sheet casting. The TiAl sheet thus produced shows remarkable high temperature tensile strength which exceeds that of conventional ingots having the same composition and various different structures. This is determined to be attributable to the dispersion strengthening of finely dispersed AI2O3 particles whose diameter is from 100 to 500nm. Moreover, because of the small size of these alumina particles, the TiAl sheet does not show any significant retardation in high temperature ductility, which is often the case in conventional ceramic-reinforced intermetallic compound composites.

Alloy Digest ◽  
1990 ◽  
Vol 39 (12) ◽  

Abstract VASCOMAX T-300 is an 18% nickel maraging steel in which titanium is the primary strengthening agent. It develops a tensile strength of about 300,000 psi with simple heat treatment. The alloy is produced by Vacuum Induction Melting/Vacuum Arc Remelting. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: SA-454. Producer or source: Teledyne Vasco.


2021 ◽  
Vol 1035 ◽  
pp. 89-95
Author(s):  
Chao Tan ◽  
Zi Yong Chen ◽  
Zhi Lei Xiang ◽  
Xiao Zhao Ma ◽  
Zi An Yang

A new type of Ti-Al-Sn-Zr-Mo-Si series high temperature titanium alloy was prepared by a water-cooled copper crucible vacuum induction melting method, and its phase transition point was determined by differential thermal analysis to be Tβ = 1017 °C. The influences of solution temperature on the microstructures and mechanical properties of the as-forged high temperature titanium alloy were studied. XRD results illustrated that the phase composition of the alloy after different heat treatments was mainly α phase and β phase. The microstructures showed that with the increase of the solution temperature, the content of the primary α phase gradually reduced, the β transformation structure increased by degrees, then, the number and size of secondary α phase increased obviously. The tensile results at room temperature (RT) illustrated that as the solution temperature increased, the strength of the alloy gradually increased, and the plasticity decreased slightly. The results of tensile test at 650 °C illustrated that the strength of the alloy enhanced with the increase of solution temperature, the plasticity decreased first and then increased, when the solution temperature increased to 1000 °C, the alloy had the best comprehensive mechanical properties, the tensile strength reached 714.01 MPa and the elongation was 8.48 %. Based on the room temperature and high temperature properties of the alloy, the best heat treatment process is finally determined as: 1000 °C/1 h/AC+650 °C/6 h/AC.


2021 ◽  
Vol 904 ◽  
pp. 188-195
Author(s):  
Hua Qiong Wang ◽  
Li Li Zhang ◽  
Da Cheng Jiao ◽  
Yan Ru Wang ◽  
Zeng Hua Gao

The tensile properties of quartz fiber fabric-reinforced resin composites at high temperature were studied. The effects of specimen type and dimension, temperature loading procedure, holding time and loading rate on the tensile properties of the composites at high temperatures were analyzed through series of comparative experiments, the tensile test parameters were determined. Chinese national standard for high-temperature tensile property testing of the composites was compiled based on the data collected. According to the established standard, the tensile testing at 500°C was carried out. Compared with the tensile properties at room temperature, the tensile strength and tensile modulus of the composite at high temperature decreases significantly, with the tensile strength decreasing by about 42.32% and the tensile modulus decreasing by about 24.18%. This is mainly due to the high temperature which causes part of the resin matrix to pyrolyze and detach from around the fiber, thus losing the integrity of the material. In addition, this national standard for high-temperature tensile properties has some general applicability to different types of fiber-reinforced resin composites.


Refractories ◽  
1990 ◽  
Vol 31 (7-8) ◽  
pp. 446-448
Author(s):  
O. V. Bakunov ◽  
L. B. Borovkova ◽  
T. A. Melekhina ◽  
E. P. Pakhomov

2007 ◽  
Vol 1042 ◽  
Author(s):  
Stoyan Todorov Bliznakov ◽  
Nikolay G Dimitrov ◽  
Tony Spassov ◽  
Alexander Popov

AbstractHigh-capacity conventional and advanced multicomponent metal hydride alloys were synthesized in this work by two different methods. A set of AB5–type intermetallic compounds, with different Al content, were produced by high-frequency vacuum induction melting method, while AB, A2B and mixed (AB5+Mg)-types composite nanocrystalline-amorphous alloys were obtained mechanochemically by high-energy ball milling in a planetary type mill. The alloys were characterized physically by XRD, SEM and thermodynamically by van't Hoff's plots derived from experimentally obtained PCT isotherms at various temperatures. Different optimized techniques for model electrode preparation from selected metal hydride alloys were also applied. The electrodes were charged-discharged electrochemically in concentrated alkaline solution. In this paper we compare the values for the electrochemical maximum capacity and cycle-life performance of the electrodes prepared by the investigated types of alloys.


2005 ◽  
Vol 486-487 ◽  
pp. 109-112 ◽  
Author(s):  
Il Ho Kim ◽  
S.I. Kwun

The oxidation and tensile properties of a Ni20Cr20Fe5Nb alloy and a Ni20Cr20Fe 5Nb1Y2O3 alloy with nano-sized grains were compared with those of the comercial IN718 alloy. The oxidation resistance of the Ni20Cr20Fe5Nb1Y2O3 alloy was superior to that of the Ni20Cr20Fe5Nb and IN 718 alloys. This superior oxidation resistance was the result of both the formation of dense oxides on the surface of the alloy and the interruption of Cr migration in the alloy by the addition of Y2O3. Moreover, the tensile property of the Ni20Cr20Fe5Nb1Y2O3 alloy at room temperature and 400oC was higher than that of the Ni20Cr20Fe5Nb and IN718 alloys by more than 300MPa (30%). This result can be attributed to the dispersion strengthening of Y2O3. The relatively low tensile strength at 600°C and 800°C of the alloys fabricated by mechanical alloying was attributed to grain refinement showing intergranular fracture at high temperatures.


Sign in / Sign up

Export Citation Format

Share Document