Electron and X-Ray Photon Radiation Effects on Surfaces of Lead Silicate Glasses

1996 ◽  
Vol 439 ◽  
Author(s):  
Paul W. Wang

AbstractRadiation effects on insulators have been extensively studied in terms of radiation induced damage. However, little work has concentrated on in situ surface modification during irradiation and the evolution of surface relaxation after the termination of irradiation. In this work, 1.3 keV electrons and 1.2536 keV Mg Kα X-ray photons were applied to investigate radiation effects on surface structural changes during irradiation and relaxation. The microstructure and composition of lead silicate glass were investigated in situ in an ultra-high-vacuum (UHV) environment by X-ray Photoelectron Spectroscopy (XPS). Similar surface radiation effects were observed using both types of radiation which included permanent metallic lead separation from the glass network resulting from Pb-O bond breaking, bimodal distribution of the 0 is XPS signal due to bridging and non-bridging oxygens, gradual increase of total lead and silicon concentrations and gradual decrease of oxygen concentration during relaxation. Different radiation effects for electron beam and X-ray photons were also observed. For photon irradiation, silicon and lead continuously accumulated while the oxygen on the surface continuously decreased during irradiation and relaxation. In the case of electron irradiation, both silicon and lead were depleted from the surface during irradiation and accumulated during relaxation. Opposite concentration changes were observed for oxygen; it increased during irradiation and decreased during relaxation. The experimental results are discussed in terms of charge effects, secondary electron yield, field-enhanced diffusion, non-bridging oxygens and nucleation of metallic lead.

2013 ◽  
Vol 712-715 ◽  
pp. 293-297
Author(s):  
Li Li

Pt/Bi3.15Nd0.85Ti3O12(BNT)/Pt ferroelectric capacitors were monitored using in situ X-ray irradiation with 10 keV at BL14B1 beamline (Shanghai Synchrotron Radiation Facility). BL14B1 combined with a ferroelectric analyzer enabled measurements in situ of electrical performance. The hysteresis curve (PE) of distortion depended on the polarization during irradiation, but the diffracted intensities of the (117) peak did not change in the beginning. ThePEcurve had a negligible change from 2.09×109Gy to 4.45×109Gy. Finally, bothPrandPr+very rapidly increased, but the intensities of (117) decreased. The hysteresis loops were remarkably deformed at the maximum total dose of 4.87×109Gy.


1999 ◽  
Vol 567 ◽  
Author(s):  
Masayuki Suzuki ◽  
Yoji Saito

ABSTRACTWe tried direct oxynitridation of silicon surfaces by remote-plasma-exited nitrogen and oxygen gaseous mixtures at 700°C in a high vacuum. The oxynitrided surfaces were investigated with in-situ X-ray photoelectron spectroscopy. With increase of the oxynitridation time, the surface density of nitrogen gradually increases, but that of oxygen shows nearly saturation behavior after the rapid increase in the initial stage. We also annealed the grown oxynitride and oxide films to investigate the role of the contained nitrogen. The desorption rate of oxygen from the oxynitride films is much less than that from oxide films. We confirmed that nitrogen stabilizes the thermal stability of these oxynitride films.


2020 ◽  
Vol 27 (3) ◽  
pp. 813-826 ◽  
Author(s):  
Mauro Rovezzi ◽  
Alistair Harris ◽  
Blanka Detlefs ◽  
Timothy Bohdan ◽  
Artem Svyazhin ◽  
...  

The design and first results of a large-solid-angle X-ray emission spectrometer that is optimized for energies between 1.5 keV and 5.5 keV are presented. The spectrometer is based on an array of 11 cylindrically bent Johansson crystal analyzers arranged in a non-dispersive Rowland circle geometry. The smallest achievable energy bandwidth is smaller than the core hole lifetime broadening of the absorption edges in this energy range. Energy scanning is achieved using an innovative design, maintaining the Rowland circle conditions for all crystals with only four motor motions. The entire spectrometer is encased in a high-vacuum chamber that allocates a liquid helium cryostat and provides sufficient space for in situ cells and operando catalysis reactors.


2012 ◽  
Vol 717-720 ◽  
pp. 845-848 ◽  
Author(s):  
Alexia Drevin-Bazin ◽  
Jean François Barbot ◽  
Thierry Cabioc’h ◽  
Marie France Beaufort

In this study, investigations on MAX phase Ti3SiC2 formation to n-type 4H-SiC substrates and its ohmic-behaved are reported. Ti-Al layers were deposited onto SiC substrates at room temperature by magnetron sputtering in high vacuum system. Thermal annealing at 1000°C in Ar atmosphere were performed to allow interdiffusion processes. X-ray diffraction and High Resolution Transmission Electron Microscopy reveal that a Ti3SiC2 contact, in perfect epitaxy with 4H-SiC substrate, is so-obtained. In situ annealing experiment underlines the evolution of Ti-Al contact microstructure versus temperature. The evolution of contact system from Schottky to Ohmic behaved is observed by I-V measurements for annealing temperatures larger than 700°C.


1998 ◽  
Vol 5 (3) ◽  
pp. 887-889
Author(s):  
Yoshikazu Fujii ◽  
Takeshi Nakamura ◽  
Mutsumi Kai ◽  
Kentaroh Yoshida

A compact ultra-high-vacuum (UHV) X-ray diffractometer for surface glancing X-ray scattering has been constructed. All the equipment, including a rotating-anode source of 18 kW and a UHV specimen chamber, is arranged on one optical table of dimensions 70 × 90 cm. The specimen chamber is 14 cm in diameter and 20 cm high and can be evacuated up to 3 × 10−8 Pa. It is equipped with two Be windows of thicknesses 0.2 and 0.4 mm. Specimen orientation in the vacuum is controlled from the outside. The specimen can be heated up to 773 K. The chamber has two evaporation cells and can be used for in situ observations of growing crystal surfaces. Using this instrument, we observed a mechanically polished Ag surface and successfully made an in situ observation of the layer-by-layer growth of a PbSe(111) surface. The instrument will be useful for preliminary experiments using laboratory sources, prior to final measurements at synchrotron radiation facilities.


1996 ◽  
Vol 441 ◽  
Author(s):  
S. Labdi ◽  
C. Sant ◽  
L. Hennet ◽  
Ph. Houdy

AbstractIn this paper, we report on the growth and the study of Ti/TiN nanometric multilayers. The preparation of these films has been carried out by high vacuum diode r.f. sputtering. Growth was in-situ monitored by kinetic ellipsometry. Deposition temperature was kept to room and low temperature (-120°C) respectively in order to modify the interface properties and consequently to understand the effect of the interfaces on the film's mechanical properties.The thickness of each layer was varied from 1 nm to 10 nm and alternately repeated in order to obtain a total thickness of 200 nm. After deposition, films were characterized by means of X-ray diffraction and grazing X-ray reflectometry for structural determination. This study shows that the TiN-Ti boundary is composed of TiNx, with x going from the nominal nitrogen concentration of the TiN layer to 0. This can be due either to a surface reaction of the incident titanium during the Ti sequence with the nitrogen present at the film surface or to a reaction of nitrogen with the target surface during the TiN sequence.


1996 ◽  
Vol 434 ◽  
Author(s):  
Ph. Houdy ◽  
P. Psyllaki ◽  
S. Labdi ◽  
K. Suenaga ◽  
M. Jeandin

AbstractThe tribological behaviour of Ti/TiN amorphous nanometric multilayers is reported in comparison with that of single Ti and TiN layers, in order to study the wear mechanism of nanostructures submitted to that one may call “macroscopic loading”. Ti/TiN nanolayers were deposited onto Si substrate by high vacuum diode r.f. sputtering assisted by in-situ kinetic ellipsometry. Transmission Electron Microscopy (T.E.M.) characterization exhibited the multilayered structure of the films, ascertained by grazing angle X-ray reflectometry and ellipsometry. Sliding wear tests against alumina in dry air showed the ceramic-typed behaviour of the multilayers, the wear of which was partly governed through a microfracture mechanism. Their wear lifetime was found to be higher than that of Ti and TiN single layers and increased with the number of layers.


2007 ◽  
Vol 21 (18n19) ◽  
pp. 3433-3436
Author(s):  
J. T. WANG ◽  
C. ZHANG ◽  
A. FITZGERALD ◽  
Y. FU ◽  
S. HALL

We have systematically studied the X-ray radiation effects on PZT thin ceramic disk provided by CTS Communications Components, Inc using the X-ray beam line in the Center for Advanced Micro-Structure and Devices (CAMD) in Baton Rouge, Louisiana. The photo energies of the X-ray range from 2000 eV to 8000 eV. The beam size is 10.0 cm ×1.0 cm .We measure the dielectric constant in situ with different dose of the radiation in one sample and in different samples. The dielectric constants as a function of radiation dose are presented in the paper. It demonstrates the effects on the dielectric constant. Unexpectedly, we also found that X-ray radiation on the PZT disk generates charges on the surface of the samples. We measured the surface voltage due to the X-ray radiation with different radiation dose at the same temperature for these samples. This founding may have application potential for photoelectric devices. This is just a preliminary study. More thorough investigations are needed.


Sign in / Sign up

Export Citation Format

Share Document