Rapid Thermal Processing (RTP) of Shallow Silicon Junctions

1985 ◽  
Vol 45 ◽  
Author(s):  
T.E. Seidel

ABSTRACTRapid Thermal Processing (RTP) is used to study shallow junction formation for high dose implanted silicon. The residual damage from As damage is efficiently removed using high temperature-short time anneals (1100°C - few seconds), while limited arsenic atom diffusion is obtained. The diffusion properties are also characterized by concentration enhanced diffusion at higher doping. The higher doping is metastable, with reversible changes in resistivity observed for sequential 1100°C-800°C-1100°C-800°C thermal cycles. RTP gives shallower defect free As junctions than standard long time anneals. Boron junctions are limited by the depth extension of a large ion-channeling-tail which is shown to undergo local enhanced diffusion. The approaches to form shallow p+ junctions without channel tails are discussed. A summary of ion damage studies is made. Some generalizations for determining an RTP advantage or disadvantage are made, based on activation energy differences of effects.

1986 ◽  
Vol 71 ◽  
Author(s):  
Tom Sedgwick

AbstractRapid Thermal Processing (RTP) can minimize processing time and therefore minimize dopant motion during annealing of ion implanted junctions. In spite of the advantage of short time annealing using RTP, the formation of shallow B junctions is thwarted by channeling, transient enhanced diffusion and concentration enhanced diffusion effects all of which lead to deeper B profiles. Channeling and transient enhanced diffusion can be avoided by preamorphizing the silicon before the B implant. However, defects at the original amorphous/crystal boundary persist after annealing. Very low energy B implantation can lead to very shallow dopant profiles and in spite of channeling effects, offers an attractive potential shallow junction technology. In all of the shallow junction formation techniques RTP is required to achieve both high activation of the implanted species and minimal diffusion of the implanted dopant.


1987 ◽  
Vol 92 ◽  
Author(s):  
A. Usami ◽  
Y. Tokuda ◽  
H. Shiraki ◽  
H. Ueda ◽  
T. Wada ◽  
...  

ABSTRACTRapid thermal processing using halogen lamps was applied to the diffusion of Zn into GaAs0.6 P0.4:Te from Zn-doped oxide films. The Zn diffusion coefficient of the rapid thermal diffused (RTD) samples at 800°C for 6 s was about two orders of magnitude higher than that of the conventional furnace diffused samples at 800°C for 60 min. The enhanced diffusion of Zn by RTD may be ascribed to the stress field due to the difference in the thermal expansion coefficient between the doped oxide films and GaAs0.6P0.4 materials, and due to the temperature gradient in GaAs0.6P0 4 materials. The Zn diffusion coefficient at Zn concentration of 1.0 × l018 cm−3 was 3.6 × 10−11, 3.1 × 10−11 and 5.0 × 10−12 cm2 /s for the RTD samples at 950°C for 6 s from Zn-, (Zn,Ga)- and (Zn,P)-doped oxide films, respectively. This suggests that Zn diffusibility was controlled by the P in the doped oxide films.


Author(s):  
Jumardi Roslan ◽  
Hay Chye Ling ◽  
Mohd Dona Sintang ◽  
Suryani Saallah

Bambangan (Mangifera pajang Kosterm) is an indigenous fruit that can be found in Borneo Island including Sabah and Sarawak (Malaysia), Kalimantan (Indonesia), and Brunei. Besides being freshly eaten, the pulp of bambangan fruit can be processed for juice production to expand its market potential. During the processing of fruit juice, the application of heat treatment such as pasteurization and sterilization might influence their rheological behavior. Thus, the present study aims to investigate the effect of heat treatment on the rheological properties of bambangan fruit juice (BFJ). The freshly squeezed BFJ was subjected to different heat treatment conditions; sterilization (121°C, 3 minutes), mild temperature long time (MTLT) pasteurization (65°C, 15 minutes), and high temperature short time (HTST) pasteurization (90°C, 1 minute). Rheological analysis of the heat-treated BFJ was performed using a rheometer at a shear rate ranging from 1 to 250 s-1 and a temperature between 5 °C to 70 °C. Pasteurization at 90 °C for 1 minute (HTST) was found to be the most suitable heat treatment for the BFJ. At this condition, the BFJ exhibited a non-Newtonian pseudoplastic fluid behavior (n < 1), fitted well with the Herschel-Bulkey model. The value of parameters obtained from Herschel-Bulkley equation for HTST treatment of bambangan juice were n= 0.83, k= 0.32 and yield stress= 3.96. The viscosity values of HTST bambangan juice at the temperature of 5, 20, 40 and 70 °C were 3.53, 2.33, 1.53 and 1.76 Pa.s respectively. This rheological information is of fundamental importance in optimizing equipment design, process control, and sensory evaluation.


1987 ◽  
Vol 92 ◽  
Author(s):  
Jim D. Whitfield ◽  
Marie E. Burnham ◽  
Charles J. Varker ◽  
Syd.R. Wilson

The advantages of Silicon-on-Insulator (SO) devices over bulk Silicon devices are well known (speed, radiation hardened, packing density, latch up free CMOS,). In recent years, much effort has been made to form a thin, buried insulating layer just below the active device region. Several approaches are being developed to fabricate such a buried insulating layer. One viable approach is by high dose, high energy oxygen implantation directly into the silicon wafer surface (1-3). With proper implant and annealing conditions, a thin stoichiometric buried oxide with a good crystalline quality silicon overlayer can be formed on which an epitaxial layer can be grown and functional devices and circuits built. As SO1 circuits become market viable, mass production tools and techniques are being developed and evaluated. Of particular interest here is the evaluation of high current oxygen implantation with rapid thermal processing on the electrical characteristics of the oxide-silicon interfaces, the silicon overlayer and the thermally grown oxide on the top surface using measurements on gated diodes and guarded capacitors.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
V. K. Judge ◽  
J. G. Speer ◽  
K. D. Clarke ◽  
K. O. Findley ◽  
A. J. Clarke

Abstract Quenching and Tempering (Q&T) has been utilized for decades to alter steel mechanical properties, particularly strength and toughness. While tempering typically increases toughness, a well-established phenomenon called tempered martensite embrittlement (TME) is known to occur during conventional Q&T. Here we show that short-time, rapid tempering can overcome TME to produce unprecedented property combinations that cannot be attained by conventional Q&T. Toughness is enhanced over 43% at a strength level of 1.7 GPa and strength is improved over 0.5 GPa at an impact toughness of 30 J. We also show that hardness and the tempering parameter (TP), developed by Holloman and Jaffe in 1945 and ubiquitous within the field, is insufficient for characterizing measured strengths, toughnesses, and microstructural conditions after rapid processing. Rapid tempering by energy-saving manufacturing processes like induction heating creates the opportunity for new Q&T steels for energy, defense, and transportation applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yubin Wang ◽  
Wu Li ◽  
Yue Ma ◽  
Xiaoyan Zhao ◽  
Chao Zhang

The effect of thermal treatments on the quality and aroma of watermelon juice was evaluated. Watermelon juice was pasteurized via ultrahigh temperature (UHT, pasteurized at 135°C for 2 s), low temperature long time (LTLT, pasteurized at 60°C for 30 min), and high temperature short time (HTST, pasteurized at 100°C for 5 min), respectively. UHT and LTLT reduced the total flora count and maintained the color of the pasteurized juice, while the HTST led to a significant color difference. A total of 27, 21, 22, and 21 volatiles were identified in the unpasteurized juice, UHT, LTLT, and HTST, respectively. The typical watermelon aroma, including (3Z)-3-nonen-1-ol, (E)-2-nonen-1-ol, 1-nonanal, (2E)-2-nonenal, and (E,Z)-2,6-nonadienal, was abundant in the LTLT. Consequently, the aroma of the LTLT was similar to that of unpasteurized juice. Moreover, the shelf life of the LTLT reached 101 and 14 days at 4 and 25°C, respectively. Hence, the LTLT was the best way to maintain the quality and aroma of watermelon juice.


1985 ◽  
Vol 52 ◽  
Author(s):  
Alwin E. Michel

ABSTRACTTransient enhanced diffusion during rapid thermal processing has been reported for most of the common dopants employed for silicon device fabrication. For arsenic a large amount of the available data is fit by a computational model based on accepted diffusion mechanisms. Ion implanted boron on the other hand exhibits anomalous tails and transient motiou. A time dependence of this displacement is demonstrated at lower temperatures. High temperature rapid anneals are shown to reduce some of the anomalous motion observed for low temperature furnace anneals. A model is described that links the electrical activation with the diffusion and describes both the transient diffusion of rapid thermal processing and the large anomalous diffusion reported many years ago for furnace anneals.


2011 ◽  
Vol 1308 ◽  
Author(s):  
Flavia P. Luce ◽  
Felipe Kremer ◽  
Dario F. Sanchez ◽  
Zacarias E. Fabrim ◽  
Shay Reboh ◽  
...  

ABSTRACTThe ion beam synthesis of Pb nanoparticles (NPs) in silica/silicon films is studied in terms of the combination of a two-step annealing process consisting of a low temperature long time aging treatment followed by a high temperature short time furnace annealing. The samples are analyzed through Rutherford Backscattering Spectrometry and Transmission Electron Microscopy. The aging process leads to the suppression of the classical homogeneous nucleation of metallic Pb NPs in the silica, thus promoting Pb redistribution during the high temperature annealing. This causes the formation of dense bi-dimensional NP arrays located at the silica-silicon interface, presenting small size dispersion.


2019 ◽  
Vol 9 (2) ◽  
pp. 1-9
Author(s):  
Eko Urcahyo ◽  
Choirul Saleh ◽  
Bambang Prio Hartono

Pasteurisasi adalah suatu proses pemanasan pada suhu dibawah 100ºC dalam jangka waktu tertentu yang dapat mematikan mikroba yang ada dalam susu. Saat ini dikenal dengan dua metode yang lazim digunakan pada proses pasteurisasi susu, yaitu LTLT (low temperature long time) dan HTST (high temperature short time ). Metode LT LT pada dasarnya dilakukan dengan pemanasan susu antara suhu 63-65º C dan dipertahankan pada suhu tersebut selama 30 menit. Sedangkan metode HTST dilakukan dengan pemanasan susu selama 5-10 menit pada suhu 70-71ºC. Dengan pemanasan ini diharapkan akan dapat membunuh bakteri pantogen yang membahayakan kesehatan manusia dan meminimalisasi perkembangan bakteri lain, baik selama pemanasan maupun pada saat penyimpanan. Untuk itu dirancang sebuah alat untuk mengontrol suhu pada pasteurisasi susu dengan kontrol PID di Kube PSP Desa Kemiri Kecamatan Jabung Malang menggunakan sensor DS18B20 yang berfungsi untuk mengetahui suhu pada susu. Perancangan ini menggunakan servo dan dimmer untuk mengatur suhu pada susu. Dari hasil pengujian, alat dapat menurunkan dan menaikkan suhu ketika suhu melewati batas setpoint yang ditentukan oleh pengguna. Untuk mencapai setpoint 65ºC pemanasan membutuhkan waktu yang cukup lama, yaitu 2 jam 56 menit 51 detik sedangkan hasil tuning PID secara trial and error, servo dapat memutar dengan baik untuk nilai kp = 1,5, ki = 0,2, kd = 8 dengan setpoint 65ºC.


2021 ◽  
Vol 10 (1) ◽  
pp. 24-35
Author(s):  
Andi Muhammad Irfan ◽  
Nunik Lestari ◽  
Arimansyah Arimansyah ◽  
A Ramli Rasyid

This study was aimed to determine the drying kinetics of chilies that have been pretreated with low temperature long time (LTLT) blanching. Drying chilies with LTLT blanching pretreatment at 60, 70, and 80 oC for 20 minutes was assigned as treatment in this research. Drying chillies with high temperature short time (HTST) blanching pretreatment, without blanching pretreatment in the dryer, and without blanching pretreatment in direct sunlight were also studied as the comparison. The results showed that chilies treated with blanching pretreatment, both LTLT and HTST, have a faster drying rate and achieve the target moisture content faster than chilies that were not blanched. The color of dried chilies that were dried in a dryer was also better than dried chilies that were dried in the sun. Of all the blanching treatments, chilies with LTLT blanching pretreatment at 80 oC for 20 minutes had the fastest drying rate, a drying time of 34 hours, and the attractive dried chilli color. The evaluation results also showed that the Page model was the most suitable model to describe the drying characteristics of chilies with LTLT pretreatment blanching, with R2 ranging from 0.9913-0.9935, X2 ranging from 0.0005-0.0009, and RSME ranging from 0.0221-0.0293. Keywords: Chili; blanching; color; drying; mathematical model   ABSTRAK Penelitian ini bertujuan untuk mengetahui kinetika pengeringan cabai yang diberi perlakuan awal low temperature long time (LTLT) blanching atau blansing pada suhu rendah dalam waktu yang relatif lama. Perlakuan pada penelitian ini yaitu pengeringan cabai dengan blansing metode LTLT pada suhu 60o, 70o, dan 80oC selama 20 menit. Sebagai pembanding, dilakukan juga pengeringan dengan perlakuan awal metode high temperature short time (HTST) blanching, pengeringan cabai tanpa perlakuan awal blansing di dalam alat pengering, serta pengeringan cabai tanpa perlakuan awal blansing di bawah sinar matahari secara langsung. Hasil penelitian menunjukkan bahwa cabai dengan perlakuan awal blansing, baik blansing metode LTLT maupun HTST, memiliki laju pengeringan yang lebih tinggi sehingga lebih cepat mencapai kadar air target dibandingkan dengan cabai tanpa perlakuan blansing. Warna cabai kering yang dihasilkan pada alat pengering juga lebih baik dari cabai kering yang dikeringkan langsung di bawah sinar matahari. Dari seluruh perlakuan yang melibatkan proses blansing, cabai dengan blansing metode LTLT pada suhu 80oC selama 20 menit merupakan perlakuan dengan laju pengeringan tercepat, dengan waktu pengeringan selama 34 jam, dan warna produk cabai kering yang menarik. Hasil evaluasi juga menunjukkan bahwa model Page adalah model yang paling sesuai untuk menggambarkan karakteristik pengeringan cabai dengan perlakuan awal blansing metode LTLT, dengan R2 berkisar antara 0.9913-0.9935, X2 berkisar antara 0.0005-0.0009, dan RSME berkisar antara 0.0221-0.0293. Kata kunci: Blansing; cabai; model matematika; pengeringan; warna


Sign in / Sign up

Export Citation Format

Share Document