Diffusion Modeling of the Redistribution of Ion Implanted Impurities

1985 ◽  
Vol 52 ◽  
Author(s):  
Alwin E. Michel

ABSTRACTTransient enhanced diffusion during rapid thermal processing has been reported for most of the common dopants employed for silicon device fabrication. For arsenic a large amount of the available data is fit by a computational model based on accepted diffusion mechanisms. Ion implanted boron on the other hand exhibits anomalous tails and transient motiou. A time dependence of this displacement is demonstrated at lower temperatures. High temperature rapid anneals are shown to reduce some of the anomalous motion observed for low temperature furnace anneals. A model is described that links the electrical activation with the diffusion and describes both the transient diffusion of rapid thermal processing and the large anomalous diffusion reported many years ago for furnace anneals.

1987 ◽  
Vol 92 ◽  
Author(s):  
A. Usami ◽  
Y. Tokuda ◽  
H. Shiraki ◽  
H. Ueda ◽  
T. Wada ◽  
...  

ABSTRACTRapid thermal processing using halogen lamps was applied to the diffusion of Zn into GaAs0.6 P0.4:Te from Zn-doped oxide films. The Zn diffusion coefficient of the rapid thermal diffused (RTD) samples at 800°C for 6 s was about two orders of magnitude higher than that of the conventional furnace diffused samples at 800°C for 60 min. The enhanced diffusion of Zn by RTD may be ascribed to the stress field due to the difference in the thermal expansion coefficient between the doped oxide films and GaAs0.6P0.4 materials, and due to the temperature gradient in GaAs0.6P0 4 materials. The Zn diffusion coefficient at Zn concentration of 1.0 × l018 cm−3 was 3.6 × 10−11, 3.1 × 10−11 and 5.0 × 10−12 cm2 /s for the RTD samples at 950°C for 6 s from Zn-, (Zn,Ga)- and (Zn,P)-doped oxide films, respectively. This suggests that Zn diffusibility was controlled by the P in the doped oxide films.


1986 ◽  
Vol 71 ◽  
Author(s):  
Tom Sedgwick

AbstractRapid Thermal Processing (RTP) can minimize processing time and therefore minimize dopant motion during annealing of ion implanted junctions. In spite of the advantage of short time annealing using RTP, the formation of shallow B junctions is thwarted by channeling, transient enhanced diffusion and concentration enhanced diffusion effects all of which lead to deeper B profiles. Channeling and transient enhanced diffusion can be avoided by preamorphizing the silicon before the B implant. However, defects at the original amorphous/crystal boundary persist after annealing. Very low energy B implantation can lead to very shallow dopant profiles and in spite of channeling effects, offers an attractive potential shallow junction technology. In all of the shallow junction formation techniques RTP is required to achieve both high activation of the implanted species and minimal diffusion of the implanted dopant.


1997 ◽  
Vol 470 ◽  
Author(s):  
J. Hong ◽  
J. W. Lee ◽  
C. B. Vartuli ◽  
J. D. MacKenzie ◽  
S. M. Donovan ◽  
...  

ABSTRACTTransient thermal processing is employed for implant activation, contact alloying, implant isolation and dehydrogenation during III-nitride device fabrication. We have compared use of InN, AlN and GaN powder as methods for providing a N2 overpressure within a graphite susceptor for high temperature annealing of GaN, InN, A1N and InAlN. The AlN powder provides adequate surface protection to temperatures of ∼1100°C for AlN, > 1050°C for GaN, ∼600°C for InN and ∼800°C for the ternary alloy. While the InN powder provides a higher N2 partial pressure than AlN powder, at temperatures above ∼750°C the evaporation of In is sufficiently high to produce condensation of In droplets on the surfaces of the annealed samples. GaN powder achieved better surface protection than the other two cases.


1996 ◽  
Vol 429 ◽  
Author(s):  
P. J. Timans

AbstractRapid thermal processing (RTP) has become a key technology in the fabrication of advanced semiconductor devices. As RTP becomes the accepted technique for an increasingly wide range of processes in device fabrication, the understanding of the basic physics of radiation heat transfer in RTP systems is also being extended rapidly. This paper illustrates the use of optical models for prediction of the thermal radiative properties of semiconductor wafers. Such calculations can be used to address many of the key issues of interest in RTP, including questions concerning temperature measurement and process repeatability.


2013 ◽  
Vol 265 ◽  
pp. 833-838 ◽  
Author(s):  
W.C.T. Lee ◽  
N. Bishop ◽  
D.L. Thompson ◽  
K. Xue ◽  
G. Scappucci ◽  
...  

1987 ◽  
Vol 92 ◽  
Author(s):  
Tohru Hara ◽  
Jeffrey C. Gelpey

ABSTRACTThe use of Rapid Thermal Processing (RTP) for the activation of silicon ion implanted channel layers in GaAs MESFET devices has been studied. Tungsten-halogen lamp and Water-wall DC arc lamp RTP have been compared. The arc lamp gave superior abruptness of the carrier concentration profile (78% at 850°C for 15 seconds or 1000°C for 2 seconds) and dopant activation greater than 60%. These parameters are important to achieve good MESFETs fabricated using arc lamp RTP was also studied. The transconductance (gm) of the devices usinq RTP was 78mS/mm which is much higher than achieved with similar samples using furnace annealing. Both capped and capless RTP was examined. Although capped annealing generally yields superior surface quality, the capless annealing provided good electrical properties in a process window which also yielded adequate surface quality and good devices.


1982 ◽  
Vol 14 ◽  
Author(s):  
Arthur F.W. Willoughby

ABSTRACTSelf-diffusion studies are vital in the elucidation of atomic mechanisms of diffusion; as well as in the better understanding of device fabrication processes, such as the annealing of ion-implanted layers. This review outlines first the major reasons for interest in self-diffusion in III–V and II–VI compounds. It discusses the main differences with elemental semiconductors, including the wide variety of possible defects in the compounds, the role of departures from stoichiometry, and the value of tracer and interdiffusion studies. Self-diffusion studies in III–V compounds are next reviewed, including recent measurements in GaAs, where more information on diffusion mechanisms is becoming available. Interdiffusion between different III–V compounds is also discussed in the light of self-diffusion studies. Next, recent progress on self-diffusion in certain II–VI compounds is discussed, where interdiffusion studies have also provided a significant contribution. The review concludes by suggesting areas where research is urgently needed to clarify diffusion mechanisms.


1986 ◽  
Vol 74 ◽  
Author(s):  
S. J. Pennycook ◽  
R. J. Culbertson

AbstractWe report the transient enhanced diffusion of supersaturated phosphorus in ion-implanted SPE grown Si. Precipitation proceeds rapidly to a metastable SiP phase, which can be converted to an orthorhombic form or redissolved by subsequent heat treatment. The effects are strongly temperature dependent, and consistent with the trapped interstitial model. The behavior of different dopants follows their relative interstitialcy diffusion coefficients. The results suggest that ion implantation induced point defects dominate over thermally activated point defects during low temperature and certain rapid thermal processing, controlling dopant deactivation and diffusion in crystalline or amorphous silicon, and can also affect the SPE growth rate.


1991 ◽  
Vol 224 ◽  
Author(s):  
K. H. Jung ◽  
T. Y. Hsieh ◽  
D. L. Kwong

AbstractRapid thermal processing chemical vapor deposition (RTP-CVD) has received considerable attention as a novel in-situ multi-processing tool capable of meeting the stringent requirements of ULSI device fabrication. In this paper, we review the progress made in developing and applying RTP-CVD to ULSI device fabrication. Research areas discussed include epitaxial Si and poly-Si growth, in-situ doping, selective growth, in-situ multi-processing, and novel dielectrics. In addition, the extension of RTP-CVD to novel materials such as GexSi1−x has produced device quality films with successful application in HBTs and Si-based optoelectronics.


1987 ◽  
Vol 92 ◽  
Author(s):  
A. Kermani ◽  
F. Van Gieson ◽  
S. Litwin ◽  
R. Sullivan ◽  
T. J. DeBolske ◽  
...  

ABSTRACTThe activation of ion implanted emitters for two types of NPN bipolar junction transistors ( BJT ) by rapid thermal processing (RTP) was evaluated. The dopant profiles and the resultant junction depths were measured for various thermal cycles, using spreading resistance profile technique. The electrical characteristics of the transistors were then determined and compared to the standard furnace processes. The common emitter current gain values, hFE, for arsenic emitters were low and phosphorous emitters exhibited improved or comparable betas. The breakdown voltages in common emitter configuration, BV,CEO, BVcEs and BVEBO were comparable or better than the furnace annealed samples and no evidence of transistor leakage was observed.


Sign in / Sign up

Export Citation Format

Share Document