Cross-Sectional Transmission Electron Microscopy of Defects in Beta Silicon Carbide Thin Films

1985 ◽  
Vol 46 ◽  
Author(s):  
C.H. Carter ◽  
J.A. Edmond ◽  
J.W. Palmour ◽  
J. Ryu ◽  
H.J. Kim ◽  
...  

AbstractTechniques have been developed at NCSU for fabricating cross-sectional transmission electron microscopy (XTEM) foils from monocrystalline beta silicon carbide thin films grown by chemical vapor deposition. The results of the TEM observations are utilized to discern the efficacy of the various processing parameters in terms of film quality and defect structure as well as oxidation, ion implantation and annealing procedures.

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3645
Author(s):  
Liyao Zhang ◽  
Yuxin Song ◽  
Nils von den Driesch ◽  
Zhenpu Zhang ◽  
Dan Buca ◽  
...  

The structural properties of GeSn thin films with different Sn concentrations and thicknesses grown on Ge (001) by molecular beam epitaxy (MBE) and on Ge-buffered Si (001) wafers by chemical vapor deposition (CVD) were analyzed through high resolution X-ray diffraction and cross-sectional transmission electron microscopy. Two-dimensional reciprocal space maps around the asymmetric (224) reflection were collected by X-ray diffraction for both the whole structures and the GeSn epilayers. The broadenings of the features of the GeSn epilayers with different relaxations in the ω direction, along the ω-2θ direction and parallel to the surface were investigated. The dislocations were identified by transmission electron microscopy. Threading dislocations were found in MBE grown GeSn layers, but not in the CVD grown ones. The point defects and dislocations were two possible reasons for the poor optical properties in the GeSn alloys grown by MBE.


2010 ◽  
Vol 17 (03) ◽  
pp. 289-292 ◽  
Author(s):  
SEONG GU KANG ◽  
SUNG CHANG PARK ◽  
JUN-KI CHUNG ◽  
NAM HOON LEE ◽  
WON NAM KANG ◽  
...  

We have deposited MgB 2 thin films on the carbon fiber by hybrid physical–chemical vapor deposition (HPCVD) method which is known as the most effective technique for depositing MgB 2 thin films without pore formation. By adopting carbon fiber as substrate and gas phase reaction between diborane ( B 2 H 6) gas and Mg vapor for MgB 2 formation, core-shell structured MgB 2/ C composite fiber could be synthesized. The high quality of the prepared MgB 2 fibers was confirmed with scanning electron microscopy (SEM), and the critical temperature (T c ) of the sample deposited at 590°C and 12 sccm flow rate of B 2 H 6 was measured at ~40 K. The microstructures of MgB 2 layer was characterized using transmission electron microscopy (TEM). The bright-field TEM images showed MgB 2 with the grain size of several nanometers. The MgB 2 thin film showed highly dense microstructure without pore and well-connected to the carbon fiber interface. High-resolution TEM (HRTEM) images and scanning transmission electron microscopy (STEM) revealed the presence of interface phase between MgB 2 thin films and carbon fiber.


Author(s):  
K. Doong ◽  
J.-M. Fu ◽  
Y.-C. Huang

Abstract The specimen preparation technique using focused ion beam (FIB) to generate cross-sectional transmission electron microscopy (XTEM) samples of chemical vapor deposition (CVD) of Tungsten-plug (W-plug) and Tungsten Silicides (WSix) was studied. Using the combination method including two axes tilting[l], gas enhanced focused ion beam milling[2] and sacrificial metal coating on both sides of electron transmission membrane[3], it was possible to prepare a sample with minimal thickness (less than 1000 A) to get high spatial resolution in TEM observation. Based on this novel thinning technique, some applications such as XTEM observation of W-plug with different aspect ratio (I - 6), and the grain structure of CVD W-plug and CVD WSix were done. Also the problems and artifacts of XTEM sample preparation of high Z-factor material such as CVD W-plug and CVD WSix were given and the ways to avoid or minimize them were suggested.


2021 ◽  
Vol 21 (4) ◽  
pp. 2538-2544
Author(s):  
Nguyen Minh Hieu ◽  
Nguyen Hoang Hai ◽  
Mai Anh Tuan

Tin oxides nanowires were prepared by chemical vapor deposition using shadow mask. X-ray diffraction indicated that the products were tetragonal having crystalline structure with lattice constants a = 0.474 nm and c = 0.318 nm. The high-resolution transmission electron microscopy revealed that inter planar spacing is 0.25 nm. The results chemical mapping in scanning transmission electron microscopy so that the two elements of Oxygen and Tin are distributed very homogeneously in nanowires and exhibit no apparent elements separation. A bottom-up mechanism for SnO2 growth process has been proposed to explain the morphology of SnO2 nanowires.


1990 ◽  
Vol 5 (8) ◽  
pp. 1605-1611 ◽  
Author(s):  
S. J. Golden ◽  
H. Isotalo ◽  
M. Lanham ◽  
J. Mayer ◽  
F. F. Lange ◽  
...  

Superconducting YBaCuO thin films have been fabricated on single-crystal MgO by the spray-pyrolysis of nitrate precursors. The effects on the superconductive behavior of processing parameters such as time and temperature of heat treatment and film thickness were investigated. The superconductive behavior was found to be strongly dependent on film thickness. Films of thickness 1 μm were found to have a Tc of 67 K while thinner films showed appreciably degraded properties. Transmission electron microscopy studies have shown that the heat treatments necessary for the formation of the superconductive phase (for example, 950 °C for 30 min) also cause a substantial degree of film-substrate interdiffusion. Diffusion distances for Cu in the MgO substrate and Mg in the film were found to be sufficient to explain the degradation of the superconductive behavior in films of thickness 0.5 μm and 0.2 μm. From the concentration profiles obtained by EDS analysis diffusion coefficients at 950 °C for Mg into the YBaCuO thin film and for Cu into the MgO substrate were evaluated as 3 × 10−19 m2/s and 1 × 10−17 m2/s, respectively.


Sign in / Sign up

Export Citation Format

Share Document