Mechanical properties of SU-8

1998 ◽  
Vol 546 ◽  
Author(s):  
A. Mcaleavey ◽  
G. Coles ◽  
R. L. Edwards ◽  
W. N. Sharpe

AbstractAn existing test system for recording the stress-strain curves of metal microspecimens has been used to measure the strength of the ultrathick photoresist SU-8. The microspecimens are 3 mm long with a gage section 0.2 mm wide. The SU-8-25 specimens were 0.08 mm thick with an average strength of nearly 120 MPa, and the SU-8-50 specimens were 0.125 or 0.145 mm thick with an average strength of 130 MPa. Measurements of Young's modulus proved difficult, but a preliminary value of 3 GPa was obtained.

Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 529
Author(s):  
Chunzhi Du ◽  
Zhifan Li ◽  
Bingfei Liu

Nanoporous Shape Memory Alloys (SMA) are widely used in aerospace, military industry, medical and health and other fields. More and more attention has been paid to its mechanical properties. In particular, when the size of the pores is reduced to the nanometer level, the effect of the surface effect of the nanoporous material on the mechanical properties of the SMA will increase sharply, and the residual strain of the SMA material will change with the nanoporosity. In this work, the expression of Young’s modulus of nanopore SMA considering surface effects is first derived, which is a function of nanoporosity and nanopore size. Based on the obtained Young’s modulus, a constitutive model of nanoporous SMA considering residual strain is established. Then, the stress–strain curve of dense SMA based on the new constitutive model is drawn by numerical method. The results are in good agreement with the simulation results in the published literature. Finally, the stress-strain curves of SMA with different nanoporosities are drawn, and it is concluded that the Young’s modulus and strength limit decrease with the increase of nanoporosity.


2011 ◽  
Vol 243-249 ◽  
pp. 2310-2313 ◽  
Author(s):  
Hua Yan Yao ◽  
Zhen Hua Zhang ◽  
Zhao Hui Zhu

Water is an important factor that influences the mechanical properties of rock. Uniaxial compressive experiments have been carried out on sandstone under different cyclic times of drying and wetting. The corresponding complete stress-strain curves are obtained, and characteristics of deformation and failure are analyzed. Test results show that when sandstone samples are submitted to cyclic of drying and wetting, the uniaxial strength and Young's modulus of sandstone obviously decrease. Then, the improved Duncan constitutive model is developed, which can do better in describing sample’s deformation behaviors subject to different cyclic times of drying and wetting. Introduction


2010 ◽  
Vol 638-642 ◽  
pp. 3793-3798
Author(s):  
Wolfgang H. Müller ◽  
Holger Worrack ◽  
Jens Sterthaus

The fabrication of microelectronic and micromechanical devices leads to the use of only very small amounts of matter, which can behave quite differently than the corresponding bulk. Clearly, the materials will age and it is important to gather information on the (changing) material characteristics. In particular, Young’s modulus, yield stress, and hardness are of great interest. Moreover, a complete stress-strain curve is desirable for a detailed material characterization and simulation of a component, e.g., by Finite Elements (FE). However, since the amount of matter is so small and it is the intention to describe its behavior as realistic as possible, miniature tests are used for measuring the mechanical properties. In this paper two miniature tests are presented for this purpose, a mini-uniaxial-tension-test and a nanoindenter experiment. In the tensile test the axial load is prescribed and the corresponding extension of the specimen length is recorded, both of which determines the stress-strain- curve directly. The stress-strain curves are analyzed by assuming a non-linear relationship between stress and strain of the Ramberg-Osgood type and by fitting the corresponding parameters to the experimental data (obtained for various microelectronic solders) by means of a non-linear optimization routine. For a detailed analysis of very local mechanical properties nanoindentation is used, resulting primarily in load vs. indentation-depth data. According to the procedure of Oliver and Pharr this data can be used to obtain hardness and Young’s modulus but not a complete stress-strain curve, at least not directly. In order to obtain such a stress-strain-curve, the nanoindentation experiment is combined with FE and the coefficients involved in the corresponding constitutive equations for stress and strain are obtained by means of the inverse method. The stress-strain curves from nanoindentation and tensile tests are compared for two mate-rials (aluminum and steel). Differences are explained in terms of the locality of the measurement. Finally, material properties at elevated temperature are of particular interest in order to characterize the materials even more completely. We describe the setup for hot stage nanoindentation tests in context with first results for selected materials.


2001 ◽  
Vol 43 (6) ◽  
pp. 49-57 ◽  
Author(s):  
V. Körstgens ◽  
H.-C. Flemming ◽  
J. Wingender ◽  
W. Borchard

The mechanical properties of biofilms and in particular their mechanical strength is of great importance for both biofilm reactors and for the removal of undesired biofilms as in cases of biofouling and biocorrosion. By uniaxial compression measurements, it is possible to determine the apparent elastic or Young's modulus and the yield stress as parameters for mechanical stability. This was performed with a recently developed device, using model biofilms of mucoid strain Pseudomonas aeruginosa SG81. The biofilms were grown on membrane filters placed on nutrient agar medium with different concentrations of calcium ions. The compressive stress - strain behaviour up to failure was recorded at a compression speed of 1 μm s-1. The apparent Young's modulus, representing the stiffness of the biofilm, and the yield stress obtained from the stress - strain diagram were used for the description of mechanical properties of biofilms. A certain critical concentration of calcium ions was found where the Young's modulus of the P. aeruginosa biofilms increases strongly and subsequently remains constant for higher calcium concentrations. This behaviour is explained by the presence of calcium ions crosslinking alginate, which is the major component of the extracellular polymeric substances produced by the mucoid P. aeruginosa strain used in this investigation.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Salloom ◽  
S. A. Mantri ◽  
R. Banerjee ◽  
S. G. Srinivasan

AbstractFor decades the poor mechanical properties of Ti alloys were attributed to the intrinsic brittleness of the hexagonal ω-phase that has fewer than 5-independent slip systems. We contradict this conventional wisdom by coupling first-principles and cluster expansion calculations with experiments. We show that the elastic properties of the ω-phase can be systematically varied as a function of its composition to enhance both the ductility and strength of the Ti-alloy. Studies with five prototypical β-stabilizer solutes (Nb, Ta, V, Mo, and W) show that increasing β-stabilizer concentration destabilizes the ω-phase, in agreement with experiments. The Young’s modulus of ω-phase also decreased at larger concentration of β-stabilizers. Within the region of ω-phase stability, addition of Nb, Ta, and V (Group-V elements) decreased Young’s modulus more steeply compared to Mo and W (Group-VI elements) additions. The higher values of Young’s modulus of Ti–W and Ti–Mo binaries is related to the stronger stabilization of ω-phase due to the higher number of valence electrons. Density of states (DOS) calculations also revealed a stronger covalent bonding in the ω-phase compared to a metallic bonding in β-phase, and indicate that alloying is a promising route to enhance the ω-phase’s ductility. Overall, the mechanical properties of ω-phase predicted by our calculations agree well with the available experiments. Importantly, our study reveals that ω precipitates are not intrinsically embrittling and detrimental, and that we can create Ti-alloys with both good ductility and strength by tailoring ω precipitates' composition instead of completely eliminating them.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3467
Author(s):  
Anna Nocivin ◽  
Doina Raducanu ◽  
Bogdan Vasile ◽  
Corneliu Trisca-Rusu ◽  
Elisabeta Mirela Cojocaru ◽  
...  

The present paper analyzed the microstructural characteristics and the mechanical properties of a Ti–Nb–Zr–Fe–O alloy of β-Ti type obtained by combining severe plastic deformation (SPD), for which the total reduction was of etot = 90%, with two variants of super-transus solution treatment (ST). The objective was to obtain a low Young’s modulus with sufficient high strength in purpose to use the alloy as a biomaterial for orthopedic implants. The microstructure analysis was conducted through X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) investigations. The analyzed mechanical properties reveal promising values for yield strength (YS) and ultimate tensile strength (UTS) of about 770 and 1100 MPa, respectively, with a low value of Young’s modulus of about 48–49 GPa. The conclusion is that satisfactory mechanical properties for this type of alloy can be obtained if considering a proper combination of SPD + ST parameters and a suitable content of β-stabilizing alloying elements, especially the Zr/Nb ratio.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 461
Author(s):  
Konrad Kosiba ◽  
Konda Gokuldoss Prashanth ◽  
Sergio Scudino

The phase and microstructure formation as well as mechanical properties of the rapidly solidified Mg67Ag33 (at. %) alloy were investigated. Owing to kinetic constraints effective during rapid cooling, the formation of equilibrium phases is suppressed. Instead, the microstructure is mainly composed of oversaturated hexagonal closest packed Mg-based dendrites surrounded by a mixture of phases, as probed by X-ray diffraction, electron microscopy and energy dispersive X-ray spectroscopy. A possible non-equilibrium phase diagram is suggested. Mainly because of the fine-grained dendritic and interdendritic microstructure, the material shows appreciable mechanical properties, such as a compressive yield strength and Young’s modulus of 245 ± 5 MPa and 63 ± 2 GPa, respectively. Due to this low Young’s modulus, the Mg67Ag33 alloy has potential for usage as biomaterial and challenges ahead, such as biomechanical compatibility, biodegradability and antibacterial properties are outlined.


2012 ◽  
Vol 3 (1) ◽  
pp. 13-26
Author(s):  
Myrtha Karina ◽  
Lucia Indrarti ◽  
Rike Yudianti ◽  
Indriyati

The effect of castor oil on the physical and mechanical properties of bacterial cellulose is described. Bacterial cellulose (BC) was impregnated with 0.5–2% (w/v) castor oil (CO) in acetone–water, providing BCCO films. Scanning electron micrographs revealed that the castor oil penetrated the pores of the bacterial cellulose, resulting in a smoother morphology and enhanced hydrophilicity. Castor oil caused a slight change in crystallinity indices and resulted in reduced tensile strength and Young's modulus but increased elongation at break. A significant reduction in tensile strength and Young's modulus was achieved in BCCO films with 2% castor oil, and there was an improvement in elongation at break and hydrophilicity. Impregnation with castor oil, a biodegradable and safe plasticiser, resulted in less rigid and more ductile composites.


1993 ◽  
Vol 308 ◽  
Author(s):  
Sandrine Bec ◽  
André Tonck ◽  
Jean-Luc Loubet

ABSTRACTPyrolysis of polymer precursors (polysilazane) is a technologically and economically interesting way to produce thin ceramic coatings. However, many cracks appear and decohesion occurs during pyrolysis when the ceramic coatings (SiOCN) are thicker than 0.5 micrometers. In order to understand these cracking phenomena, the coatings are mechanically characterized by nanoindentation at different stages of the pyrolysis heat treatment.During pyrolysis, the cracking temperature is detected by in-situ optical observation. The thickness of the coatings varies during pyrolysis from 3 micrometers at the polymeric state to 1 micrometer at the ceramic state. The coatings' properties, hardness and Young's modulus are evaluated after heat treatment, taking into account the substrate's influence. A large variation of these properties occurs at the cracking temperature. Both the hardness and the Young's modulus are multiplied by a factor of 10. By analysing these results, we show that cracking is correlated with the evolution of the coatings' mechanical properties during the transformation.


Sign in / Sign up

Export Citation Format

Share Document