In Situ Diagnostics of Methane/Hydrogen Plasma Interactions with Si(100)

1999 ◽  
Vol 569 ◽  
Author(s):  
H. L. Duan ◽  
Stacey F. Bent

ABSTRACTMethane/hydrogen plasmas have been reported to be sources both for a-C:H film deposition and for compound semiconductor etching. In this work, an in situ diagnostic study of methane/hydrogen plasma interactions with a silicon surface is carried out, focusing on the effect of hydrogen dilution. A remote electron cyclotron resonance (ECR) plasma using a H2/Ar mixture excites methane gas near a Si(l 00) substrate. In situ multiple internal reflection Fourier transform infrared (MIR-FTIR) spectroscopy is used to probe the surface species at different hydrogen dilution ratios. We find that at low methane pressure without hydrogen dilution, a-C:H films are deposited. With H2 dilution, the results suggests that some sputter/etching of the silicon surface occurs. Hence, methyl groups are identified as potential etchants for silicon materials. The data suggest that there is a competition between etching and deposition chemistry which depends strongly upon the methane pressure and hydrogen ratio in the plasma.

2022 ◽  
Vol 1048 ◽  
pp. 121-129
Author(s):  
Samit Karmakar ◽  
Soumik Kumar Kundu ◽  
Aditya Mukherjee ◽  
Sujit Kumar Bandyopadhyay ◽  
Satyaranjan Bhattacharyya ◽  
...  

Microstructural analysis of commercially available cold-rolled polycrystalline copper foil, etched and annealed in an in-house developed Electron Cyclotron Resonance (ECR) Plasma Enhanced Chemical Vapour Deposition (PE-CVD) reactor, have been carried out using x-ray diffraction (XRD) studies. The annealing experiments were carried out under a vacuum environment, keeping the working pressure of the reactor at 50×10-3 mbar, for three different time spans of 30 mins, 45 mins and 1 hour at 823 K (550 °C) and 923 K (650 °C) respectively in presence of hydrogen plasma. The XRD studies reveal the significance of annealing time at two different temperatures for the determination of physical and microstructural parameters such as the average grain size and micro-strain in copper lattice by Williamson-Hall (W-H) method.


2005 ◽  
Vol 475-479 ◽  
pp. 4067-4070
Author(s):  
Hyoun Woo Kim

We have demonstrated the preparation of the almost defect-free homoepitaxial layer and the defective layer, respectively, with and without applying the in-situ cleaning of the silicon substrate surface using electron cyclotron resonance hydrogen plasma. Secondary ion mass spectroscopy indicated that the interfacial oxygen and carbon concentrations, respectively, decreased and increased with the in-situ cleaning. We have investigated the effect of process parameters such as microwave power, d.c bias, and cleaning time, on the epitaxial growth, by evaluating the cross-sectional transmission electron microscopy images of the subsequently deposited Si homoepitaxial film.


1998 ◽  
Vol 507 ◽  
Author(s):  
S. Hamma ◽  
D. Colliquet ◽  
P. Rocai Cabarrocas

ABSTRACTMicrocrystalline silicon films were deposited on corning glass substrates both by the standard hydrogen dilution and the layer-by-layer (LBL) technique. In-situ UV-visible spectroscopic ellipsometry measurements were performed to analyze the evolution of the composition of the films.The change of the hydrogen plasma conditions by increasing the pressure in the LBL process leads to a faster kinetic of crystallization and to an increase of the deposition rate by a factor of two. The increase of the pressure and the decrease of the inter-electrode distance allowed to increase the deposition rate from 0.26 to 3 Å/s in the hydrogen dilution technique. Interestingly enough, the crystalline fraction of the films remains higher than 50%. However, as the deposition rate increases the growth process results in a slower kinetic of crystallization with a long range evolution of the film composition (up to 0.5 νm).


1994 ◽  
Vol 342 ◽  
Author(s):  
Olivier Dulac ◽  
Yves I. Nissim

ABSTRACTPassivation of III-V semiconductor surfaces and especially the GaAs surface has been studied for over two decades without significant breakthrough. However, III-V device performances are still often limited by surface properties. In particular field effect behaviour in GaAs has been impossible to obtain due to the Fermi level pinning at the surface of this material. This paper presents an integrated sequence of low thermal budget processes to provide contamination control at the GaAs surface leading to very promising field effect on GaAs.In-situ surface cleaning using a Distributed Electron Cyclotron Resonance Microwave plasma (DECR MMP) has been integrated with a thin dielectric film deposition facility using light assisted CVD technics. Photoluminescence results carried out on GaAs surfaces have demonstrated that exposure to a hydrogen plasma induces lower recombination rates on these surfaces. Bulk diffusion of hydrogen during this process can be controlled and eliminated using an integrated Rapid Thermal Annealing (RTA). Finally, in-situ encapsulation by a dielectric allows one to stabilize the electronic properties of the surface for passivation applications. A silicon nitride film deposited by a direct UV photolysis deposition process has been developed for this study and is presented here.


1996 ◽  
Vol 452 ◽  
Author(s):  
J. P. Conde ◽  
P. Brogueira ◽  
V. Chu

AbstractAmorphous and microcrystalline silicon films deposited by hot-wire chemical vapor deposition were submitted to thermal annealing and to RF and electron-cyclotron resonance (ECR) hydrogen plasmas. Although the transport properties of the films did not change after these post-deposition treatments, the power density of a Ar+ laser required to crystallize the amorphous silicon films was significantly lowered by the exposure of the films to a hydrogen plasma. This decrease was dependent on the type of hydrogen plasma used, being the strongest for an ECR plasma with the substrate held at a negative bias, followed by an ECR hydrogen plasma with the substrate electrode grounded, and finally by an RF hydrogen plasma.


1996 ◽  
Vol 420 ◽  
Author(s):  
V. Chu ◽  
J. P. Conde

AbstractHydrogenated amorphous silicon-carbon alloys are prepared using electron-cyclotron resonance (ECR) plasma-enhanced chemical-vapor deposition. Hydrogen is used as the excitation gas in the resonance chamber while silane and methane (or ethylene) are introduced in the main chamber. A minimum of 95% hydrogen dilution is used. The microwave power is kept constant at 150 W. The effect of the type of carbon source gas, silane to carbon source gas ratio, deposition pressure, substrate temperature and hydrogen dilution on the deposition rate, bandgap and Urbach energy are studied. The photoconductivity and the Urbach energy of the ECR-deposited films are compared to those prepared with glow discharge with the same bandgap.


1993 ◽  
Vol 300 ◽  
Author(s):  
M. Hong ◽  
D. Vahkshoori ◽  
L. H. Grober ◽  
J. P. Mannaerts ◽  
S. N. G. Chu ◽  
...  

ABSTRACTWe describe an in-situ fabrication process which combines electron cyclotron resonance (ECR) plasma H2 to clean native oxides, ECR SiCl4 to etch anisotropically, a brief Cl2 chemical etch to remove any near surface damage and contamination, and molecular beam epitaxial (MBE) regrowth. We report the first buried heterostructure (BH) AlGaAs/GaAs/InGaAs edge emitting laser diodes fabricated using this in-situ process. The lasers operate in continuous mode without noticeable degradation.


Sign in / Sign up

Export Citation Format

Share Document