Characterization of Thick 4H-SiC Hot-Wall CVD Layers

1999 ◽  
Vol 572 ◽  
Author(s):  
M. J. Paisley ◽  
K. G. Irvine ◽  
O. Kordina ◽  
R. Singh ◽  
J. W. Palmour ◽  
...  

ABSTRACTEpitaxial 4H-SiC layers suitable for high power devices have been grown in a hot-wall chemical-vapor deposition (CVD) system. These layers were subsequently characterized for many parameters important in device development and production. The uniformity of both thickness and doping will be presented.Doping trends vs. temperature and growth rate will be shown for the p-type dopant used. The n-type dopant drops in concentration with increasing temperature or increasing growth rate. In contrast, the p-type dopant increases in concentration with decreasing temperature or increasing growth rate. A simple descriptive model for this behavior will be presented.The outcome from capacitance-voltage and SIMS measurements demonstrate that transitions from n to n−, or p to p−, and even n to p levels can be made quickly without adjustment to growth conditions. The ability to produce sharp transitions without process changes avoids degrading the resulting surface morphology or repeatability of the process. Avoiding process changes is particularly important in growth of thick layers since surface roughness tends to increase with layer thickness.Device results from diodes producing two different blocking voltages in excess of 5 kV will also be shown. The higher voltage diodes exhibited a breakdown behavior which was near the theoretical limit for the epitaxial layer thickness and doping level grown.

1995 ◽  
Vol 395 ◽  
Author(s):  
X. Zhang ◽  
P. Kung ◽  
D. Walker ◽  
A. Saxler ◽  
M. Razeghi

ABSTRACTWe report the growth and photoluminescence characterization of GaN grown on different substrates and under different growth conditions using metalorganic chemical vapor deposition. The deep-level yellow luminescence centered at around 2.2eV is attributed to native defect, most possibly the gallium vacancy. The yellow luminescence can be substantially reduced By growing GaN under Ga-rich condition or doping GaN with Ge or Mg.


1998 ◽  
Vol 13 (7) ◽  
pp. 2003-2014 ◽  
Author(s):  
Y. Gao ◽  
Y. J. Kim ◽  
S. A. Chambers

Well-ordered, pure-phase epitaxial films of FeO, Fe3O4, and γ–Fe2O3 were prepared on MgO(001) by oxygen-plasma-assisted MBE. The stoichiometries of these thin films were controlled by varying the growth rate and oxygen partial pressure. Selective growth of γ–Fe2O3 and α–Fe2O3 was achieved by controlling the growth conditions in conjunction with the choice of appropriate substrates. Growth of the iron oxide epitaxial films on MgO at ≥350 °C is accompanied by significant Mg outdiffusion. The FeO(001) film surface exhibits a (2 × 2) reconstruction, which is accompanied by a significant amount of Fe3+ in the surface region. Fe3O4 (001) has been found to reconstruct to a structure. γ–Fe23 (001) film surface is unreconstructed.


2016 ◽  
Vol 869 ◽  
pp. 721-726 ◽  
Author(s):  
Divani C. Barbosa ◽  
Ursula Andréia Mengui ◽  
Mauricio R. Baldan ◽  
Vladimir J. Trava-Airoldi ◽  
Evaldo José Corat

The effect of argon content upon the growth rate and the properties of diamond thin films grown with different grains sizes are explored. An argon-free and argon-rich gas mixture of methane and hydrogen is used in a hot filament chemical vapor deposition reactor. Characterization of the films is accomplished by scanning electron microscopy, Raman spectroscopy and high-resolution x-ray diffraction. An extensive comparison of the growth rate values and films morphologies obtained in this study with those found in the literature suggests that there are distinct common trends for microcrystalline and nanocrystalline diamond growth, despite a large variation in the gas mixture composition. Included is a discussion of the possible reasons for these observations.


1997 ◽  
Vol 468 ◽  
Author(s):  
V. A. Joshkin ◽  
J. C Roberts ◽  
E. L. Piner ◽  
M. K. Behbehani ◽  
F. G. McIntosh ◽  
...  

ABSTRACTWe report on the growth and characterization of InGaN bulk films and AlGaN/InGaN/AlGaN double heterostructures (DHs). Good quality bulk InGaN films have been grown by metalorganic chemical vapor deposition (MOCVD) with up to 40% InN as characterized by x-ray diffraction. The effect of hydrogen in the growth ambient on the lnN% incorporation in the InGaN films is presented. Photoluminescence (PL) spectra of AlGaN/InGaN/AlGaN DHs exhibit emission wavelengths from the violet through yellow depending on the growth conditions of the active InGaN layer. The PL spectra are fairly broad both at room temperature and 20 K, and could be a result of native defects or impurity related transitions. We also observed a linear dependence between the PL intensity and excitation power density in the 0.001 W/cm2 to 10 MW/cm2 range. Time resolved PL of one of these DHs suggest a recombination lifetime on the order of 520 ps.


2013 ◽  
Vol 740-742 ◽  
pp. 251-254
Author(s):  
Milan Yazdanfar ◽  
Pontus Stenberg ◽  
Ian D. Booker ◽  
Ivan.G Ivanov ◽  
Henrik Pedersen ◽  
...  

Epitaxial growth of about 200 µm thick, low doped 4H-SiC layers grown on n-type 8° off-axis Si-face substrates at growth rates around 100 µm/h has been done in order to realize thick epitaxial layers with excellent morphology suitable for high power devices. The study was done in a hot wall chemical vapor deposition reactor without rotation. The growth of such thick layers required favorable pre-growth conditions and in-situ etch. The growth of 190 µm thick, low doped epitaxial layers with excellent morphology was possible when the C/Si ratio was below 0.9. A low C/Si ratio and a favorable in-situ etch are shown to be the key parameters to achieve 190 µm thick epitaxial layers with excellent morphology.


Author(s):  
D.P. Malta ◽  
E.A. Fitzgerald ◽  
J.B. Posthill ◽  
R.A. Rudder ◽  
G.C. Hudson ◽  
...  

A large effort continues in the development of diamond growth technologies for the production of electronic-grade diamond epitaxy. Diamond has several properties such as a wide band gap (5.48 eV) and high thermal conductivity (2000 W m-1K-1) that make it desirable for electronic applications. Characterization of diamond with cathodoluminescence (CL) spectroscopy yields information on impurity and defect distributions with both spatial and energy resolution, providing insight into the growth process.Diamond films were grown by plasma-enhanced chemical vapor deposition (PECVD) on natural type Ia 1mm × 1mm × 0.25mm diamond substrates. The results of microstructural studies on this type substrate are discussed elsewhere in these proceedings. Two films were selected for CL analysis based on their strikingly different surface morphologies but similar growth conditions. Both were grown for 6 hours at a substrate temperature of ∽ 750°C and a pressure of 5 Torr. The gas mixtures were varied: CO/CH4/H2 was used in one case and CH4/H2 in the other.


1998 ◽  
Vol 537 ◽  
Author(s):  
H. Marchand ◽  
J.P. Ibbetson ◽  
P.T. Fini ◽  
X.H. Wu ◽  
S. Keller ◽  
...  

AbstractWe demonstrate a two-step process wherein the lateral epitaxial growth (LEO) of GaN from <1010>-oriented stripes is initiated at a low V/II1 ratio to produce smooth, vertical {1120} sidewalls, and where the V/III ratio is subsequently raised in order to increase the lateral growth rate. We find that the formation of the {1101} facets is inhibited using this two-step process, and that it is possible to maintain the {1120} sidewalls while achieving a large lateral growth rate. The ratio of lateral to vertical growth rate has been increased by up to factor of 2.6 using this approach relative to identical growth conditions without the initiation at low V/III ratio. The effect of lateral growth rate on the structural properties of the stripes is discussed.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 500
Author(s):  
Sebastian Selter ◽  
Yuliia Shemerliuk ◽  
Bernd Büchner ◽  
Saicharan Aswartham

We report optimized crystal growth conditions for the quarternary compound AgCrP2S6 by chemical vapor transport. Compositional and structural characterization of the obtained crystals were carried out by means of energy-dispersive X-ray spectroscopy and powder X-ray diffraction. AgCrP2S6 is structurally closely related to the M2P2S6 family, which contains several compounds that are under investigation as 2D magnets. As-grown crystals exhibit a plate-like, layered morphology as well as a hexagonal habitus. AgCrP2S6 crystallizes in monoclinic symmetry in the space group P2/a (No. 13). The successful growth of large high-quality single crystals paves the way for further investigations of low dimensional magnetism and its anisotropies in the future and may further allow for the manufacturing of few-layer (or even monolayer) samples by exfoliation.


1999 ◽  
Vol 572 ◽  
Author(s):  
A. O. Konstantinov ◽  
S. Karlsson ◽  
P.-Å Nilsson ◽  
A.-M. Saroukhan ◽  
J.-O. Svedberg ◽  
...  

ABSTRACTLow-loped p-type silicon carbide buffer layers are grown by chemical vapor deposition on conducting and semi-insulating substrates. Capacitance-voltage and electrical admittance techniques are developed for accurate non-destructive characterization. The electrical admittance techniques suggested are capable of measuring the resistivity in a very wide range, up to 7 orders of magnitude. MESFET devices using thick buffer layers on conducting substrates are reported with Ft=8.4 GHz and Fmax=32 GHz.


Sign in / Sign up

Export Citation Format

Share Document