In-Situ X-Ray Diffraction Studies On Lithium- Ion Battery Cathodes

1999 ◽  
Vol 575 ◽  
Author(s):  
Mark A. Rodriguez ◽  
David Ingersoll ◽  
Daniel H. Doughty

ABSTRACTLiNi0.8Co0.2O2 and LiNiO2 have been characterized in-situ XRD. LiNi0.8Co0.2O2 does not undergo a monoclinic phase transformation but remains a hexagonal lattice throughout the entire charging cycle. It is hypothesized that Co-doping may help stabilize the hexagonal structure.

2019 ◽  
Vol 7 (21) ◽  
pp. 13364-13371 ◽  
Author(s):  
Xiaoyu Tang ◽  
Jie Zhou ◽  
Miao Bai ◽  
Weiwei Wu ◽  
Shaowen Li ◽  
...  

The lithium ion re-intercalated into the LiMn2O4 lattice during self-discharge.


1998 ◽  
Vol 514 ◽  
Author(s):  
Ronnen Roy ◽  
Cryil Cabral ◽  
Christian Lavoie ◽  
Jean Jordan-Sweet ◽  
R. Viswanathan ◽  
...  

ABSTRACTThe C54 phase formation process of titanium silicide was studied after selective chemical vapor despostion (CVD) onto very small silicon structures, to ascertain the efficacy of CVD to form low resistance contacts in sub-quarter micron technology. Because the selective CVD process forms silicide on any exposed silicon in a CMOS device, the process was studied on both polysilicon and Si (100) chips. The structures consisted of arrays of about 106 identical lines, 0.1 2.0 μm in width, depending on the chip. The CVD process employed TiCl4 and SiH4 for the most part as process gases and the depostion temperature ranged from 730–825°C. X-ray diffraction (XRD) was used to document the amount of C54 phase present after deposition. In some cases samples were annealed after deposition and the phase transformation behavior studied by in-situ XRD. The latter technique employed a synchrotron radiation source providng for rapid XRD spectra collection, so that the C49-C54 phase transformation could be examined with great precision in real time during rapid thermal annealing. The results of CVD depositions were compared to titanium silicide formed by sputter deposition of Ti on identical silicon chips, followed by a typical salicide protocol. Although the phase formation is affected by both film thickness and substrate temperature during CVD, the general result is that the C54 formation is more facile using the CVD process, especially for the smallest line dimensions. The findings are discussed with respect to nucleation processes occurring during growth and post-deposition thermal processing.


1998 ◽  
Vol 514 ◽  
Author(s):  
Ronnen Roy ◽  
Cryil Cabral ◽  
Christian Lavoie ◽  
Jean Jordan-Sweet ◽  
R. Viswanathan ◽  
...  

ABSTRACTThe C54 phase formation process of titanium silicide was studied after selective chemical vapor despostion (CVD) onto very small silicon structures, to ascertain the efficacy of CVD to form low resistance contacts in sub-quarter micron technology. Because the selective CVD process forms silicide on any exposed silicon in a CMOS device, the process was studied on both polysilicon and Si (100) chips. The structures consisted of arrays of about 106 identical lines, 0.1 2.0 μm in width, depending on the chip. The CVD process employed TiCl4 and SiH4 for the most part as process gases and the depostion temperature ranged from 730–825°C. X-ray diffraction (XRD) was used to document the amount of C54 phase present after deposition. In some cases samples were annealed after deposition and the phase transformation behavior studied by in-situ XRD. The latter technique employed a synchrotron radiation source providng for rapid XRD spectra collection, so that the C49-C54 phase transformation could be examined with great precision in real time during rapid thermal annealing. The results of CVD depositions were compared to titanium silicide formed by sputter deposition of Ti on identical silicon chips, followed by a typical salicide protocol. Although the phase formation is affected by both film thickness and substrate temperature during CVD, the general result is that the C54 formation is more facile using the CVD process, especially for the smallest line dimensions. The findings are discussed with respect to nucleation processes occurring during growth and post-deposition thermal processing.


2012 ◽  
Vol 512-515 ◽  
pp. 1511-1515
Author(s):  
Chun Lin Zhao ◽  
Li Xing ◽  
Xiao Hong Liang ◽  
Jun Hui Xiang ◽  
Fu Shi Zhang ◽  
...  

Cadmium sulfide (CdS) nanocrystals (NCs) were self-assembled and in-situ immobilized on the dithiocarbamate (DTCs)-functionalized polyethylene glycol terephthalate (PET) substrates between the organic (carbon disulfide diffused in n-hexane) –aqueous (ethylenediamine and Cd2+ dissolved in water) interface at room temperature. Powder X-ray diffraction measurement revealed the hexagonal structure of CdS nanocrystals. Morphological studies performed by scanning electron microscopy (SEM) and high-resolution transmission electron microscope (HRTEM) showed the island-like structure of CdS nanocrystals on PET substrates, as well as energy-dispersive X-ray spectroscopy (EDS) confirmed the stoichiometries of CdS nanocrystals. The optical properties of DTCs modified CdS nanocrystals were thoroughly investigated by ultraviolet-visible absorption spectroscopy (UV-vis) and fluorescence spectroscopy. The as-prepared DTCs present intrinsic hydrophobicity and strong affinity for CdS nanocrystals.


MRS Advances ◽  
2018 ◽  
Vol 3 (11) ◽  
pp. 563-567 ◽  
Author(s):  
Quentin Altemose ◽  
Katrina Raichle ◽  
Brittani Schnable ◽  
Casey Schwarz ◽  
Myungkoo Kang ◽  
...  

ABSTRACTTransparent optical ZnO–Bi2O3–B2O3 (ZBB) glass-ceramics were created by the melt quenching technique. In this work, a melt of the glass containing stoichiometric ratios of Zn/Bi/B and As was studied. Differential scanning calorimeter (DSC) measurements was used to measure the thermal behavior. VIS/NIR transmission measurements were used to determine the transmission window. X-ray diffraction (XRD) was used to determine crystal phase. In this study, we explore new techniques and report a detailed study of in-situ XRD of the ZBB composition in order to correlate nucleation temperature, heat treatment temperature, and heat treatment duration with induced crystal phase.


2007 ◽  
Vol 336-338 ◽  
pp. 463-465 ◽  
Author(s):  
Xin Lu Li ◽  
Fei Yu Kang ◽  
Yong Ping Zheng ◽  
Xiu Juan Shi ◽  
Wan Ci Shen

Partial oxygen in LiNi0.7Co0.3O2 was replaced by chlorine to form LiNi0.7Co0.3O1.9Cl0.1. Phase structure of LiNi0.7Co0.3O1.9Cl0.1 was identified as a pure hexagonal lattice of α-NaFeO2 type by X-ray diffraction. Discharge capacity of LiNi0.7Co0.3O1.9Cl0.1 was 202 mAh/g in initial cycle at 15 mA/g current density in 2.5- 4.3 V potential window. The constant current charge/discharge experiments and cyclic voltammograms showed that chlorine addition was effective to improve reversible capacity and cycle stability of LiNi0.7Co0.3O2.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1415 ◽  
Author(s):  
Guillaume Geandier ◽  
Lilian Vautrot ◽  
Benoît Denand ◽  
Sabine Denis

In situ high-energy X-ray diffraction using a synchrotron source performed on a steel metal matrix composite reinforced by TiC allows the evolutions of internal stresses during cooling to be followed thanks to the development of a new original experimental device (a transportable radiation furnace with controlled rotation of the specimen). Using the device on a high-energy beamline during in situ thermal treatment, we were able to extract the evolution of the stress tensor components in all phases: austenite, TiC, and even during the martensitic phase transformation of the matrix.


Sign in / Sign up

Export Citation Format

Share Document