Magnetic Nanoparticle Arrays with Ultra-Uniform Length Electrodeposited in Highly Ordered Alumina Nanopores(“Alumite”)

2000 ◽  
Vol 636 ◽  
Author(s):  
Robert M. Metzger ◽  
Ming Sun ◽  
Giovanni Zangari ◽  
Mohammad Shamsuzzoha

AbstractWe report nanometer-scale ordered arrays of cylindrical magnetic nanoparticles with low aspect ratio and ultra-high uniformity. Protracted anodization provides hexagonally ordered nanopores in amorphous Al2O3. For instance, pulsed electrochemical deposition grows Co particles of uniform length from the bottoms of these pores: these particles are polycrystalline and randomly oriented. The magnetism of the array is dominated by particle shape and by inter-particle magnetostatic interactions. A very clear transition of the anisotropy from perpendicular to in-plane is observed at a height to radius ratio of about 2. This pulse-reverse electrodeposition shows great promise for a reliable synthesis of uniform nanostructures of many metals.

2021 ◽  
Author(s):  
Emily Sheridan ◽  
Silvia Vercellino ◽  
Lorenzo Cursi ◽  
Laurent Adumeau ◽  
James A. Behan ◽  
...  

We describe how magnetic nanoparticles can be used to study intracellular nanoparticle trafficking, and how magnetic extraction may be integrated with downstream analyses to investigate nanoscale decision-making events.


2021 ◽  
Vol 22 (2) ◽  
pp. 654
Author(s):  
Ka Young Kim ◽  
Keun-A Chang

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Several treatments for PD have focused on the management of physical symptoms using dopaminergic agents. However, these treatments induce various adverse effects, including hallucinations and cognitive impairment, owing to non-targeted brain delivery, while alleviating motor symptoms. Furthermore, these therapies are not considered ultimate cures owing to limited brain self-repair and regeneration abilities. In the present study, we aimed to investigate the therapeutic potential of human adipose-derived stem cells (hASCs) using magnetic nanoparticles in a 6-hydroxydopamine (6-OHDA)-induced PD mouse model. We used the Maestro imaging system and magnetic resonance imaging (MRI) for in vivo tracking after transplantation of magnetic nanoparticle-loaded hASCs to the PD mouse model. The Maestro imaging system revealed strong hASCs signals in the brains of PD model mice. In particular, MRI revealed hASCs distribution in the substantia nigra of hASCs-injected PD mice. Behavioral evaluations, including apomorphine-induced rotation and rotarod performance, were significantly recovered in hASCs-injected 6-OHDA induced PD mice when compared with saline-treated counterparts. Herein, we investigated whether hASCs transplantation using magnetic nanoparticles recovered motor functions through targeted brain distribution in a 6-OHDA induced PD mice. These results indicate that magnetic nanoparticle-based hASCs transplantation could be a potential therapeutic strategy in PD.


Nanoscale ◽  
2021 ◽  
Author(s):  
Frederik Laust Durhuus ◽  
Lau Halkier Wandall ◽  
Mathias Hoeg Boisen ◽  
Mathias Kure ◽  
Marco Beleggia ◽  
...  

Magnetically guided self-assembly of nanoparticles is a promising bottom-up method to fabricate novel materials and superstructures, such as, for example, magnetic nanoparticle clusters for biomedical applications. The existence of assembled...


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jose E. Perez ◽  
Florian Fage ◽  
David Pereira ◽  
Ali Abou-Hassan ◽  
Sophie Asnacios ◽  
...  

Abstract Background The interactions between nanoparticles and the biological environment have long been studied, with toxicological assays being the most common experimental route. In parallel, recent growing evidence has brought into light the important role that cell mechanics play in numerous cell biological processes. However, despite the prevalence of nanotechnology applications in biology, and in particular the increased use of magnetic nanoparticles for cell therapy and imaging, the impact of nanoparticles on the cells’ mechanical properties remains poorly understood. Results Here, we used a parallel plate rheometer to measure the impact of magnetic nanoparticles on the viscoelastic modulus G*(f) of individual cells. We show how the active uptake of nanoparticles translates into cell stiffening in a short time scale (< 30 min), at the single cell level. The cell stiffening effect is however less marked at the cell population level, when the cells are pre-labeled under a longer incubation time (2 h) with nanoparticles. 24 h later, the stiffening effect is no more present. Imaging of the nanoparticle uptake reveals almost immediate (within minutes) nanoparticle aggregation at the cell membrane, triggering early endocytosis, whereas nanoparticles are almost all confined in late or lysosomal endosomes after 2 h of uptake. Remarkably, this correlates well with the imaging of the actin cytoskeleton, with actin bundling being highly prevalent at early time points into the exposure to the nanoparticles, an effect that renormalizes after longer periods. Conclusions Overall, this work evidences that magnetic nanoparticle internalization, coupled to cytoskeleton remodeling, contributes to a change in the cell mechanical properties within minutes of their initial contact, leading to an increase in cell rigidity. This effect appears to be transient, reduced after hours and disappearing 24 h after the internalization has taken place.


2001 ◽  
Vol 78 (19) ◽  
pp. 2964-2966 ◽  
Author(s):  
Ming Sun ◽  
Giovanni Zangari ◽  
Mohammad Shamsuzzoha ◽  
Robert M. Metzger

Polymer ◽  
2010 ◽  
Vol 51 (12) ◽  
pp. 2661-2667 ◽  
Author(s):  
E. Bhoje Gowd ◽  
Bhanu Nandan ◽  
Nadja C. Bigall ◽  
Alexander Eychmüller ◽  
Petr Formanek ◽  
...  

Nanoscale ◽  
2015 ◽  
Vol 7 (39) ◽  
pp. 16470-16480 ◽  
Author(s):  
Hyun-Chul Kim ◽  
Eunjoo Kim ◽  
Sang Won Jeong ◽  
Tae-Lin Ha ◽  
Sang-Im Park ◽  
...  

The cytotoxicity of magnetic nanoparticles-conjugated polymeric micelles encapsulated with an anticancer drug on cancer cells was enhanced by the synergistic effect of heat and the rapid release of the drug under an alternating magnetic field.


Nanoscale ◽  
2020 ◽  
Vol 12 (27) ◽  
pp. 14573-14580
Author(s):  
Min Xu ◽  
Xueyan Feng ◽  
Feng Feng ◽  
Hantao Pei ◽  
Ruping Liu ◽  
...  

Interactions of magnetic nanoparticles with cells were investigated from a cell mechanics perspective, and magnetic nanoparticle-based force spectroscopy was developed as a novel method to measure the adhesion force among various cancer cell lines.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2277
Author(s):  
Norbert Löwa ◽  
Dirk Gutkelch ◽  
Ernst-Albrecht Welge ◽  
Roland Welz ◽  
Florian Meier ◽  
...  

Magnetic nanoparticles combine unique magnetic properties that can be used in a variety of biomedical applications for therapy and diagnostics. These applications place high demands on the magnetic properties of nanoparticles. Thus, research, development, and quality assurance of magnetic nanoparticles requires powerful analytical methods that are capable of detecting relevant structural and, above all, magnetic parameters. By directly coupling nanoparticle synthesis with magnetic detectors, relevant nanoparticle properties can be obtained and evaluated, and adjustments can be made to the manufacturing process in real time. This work presents a sensitive and fast magnetic detector for online characterization of magnetic nanoparticles during their continuous micromixer synthesis. The detector is based on the measurement of the nonlinear dynamic magnetic response of magnetic nanoparticles exposed to an oscillating excitation at a frequency of 25 kHz, a technique also known as magnetic particle spectroscopy. Our results underline the excellent suitability of the developed magnetic online detection for coupling with magnetic nanoparticle synthesis based on the micromixer approach. The proven practicability and reliability of the detector for process monitoring forms the basis for further application fields, e.g., as a monitoring tool for chromatographic separation processes.


Sign in / Sign up

Export Citation Format

Share Document