Restricted Dynamics in Polymer-Filler Systems

2000 ◽  
Vol 661 ◽  
Author(s):  
V. Arrighi ◽  
S. Gagliardi ◽  
Julia S. Higgins

ABSTRACTComposites in which fibres or fillers are incorporated into a polymeric component exhibit improved mechanical strength compared to the polymer matrix. This reinforcement effect strongly depends on the properties of the interphase and the specific interactions between the polymer and the reinforcing additive.A wide range of experimental methods have been used to assess the effect of active fillers on the mobility of the polymer chains. The experimental results from NMR, dielectric spectroscopy and dynamical thermal analysis reveal that the mobility of chain units adjacent to the adsorbed surface differs considerably from the bulk.We have used quasielastic neutron scattering to investigate the dynamic properties of poly(dimethyl siloxane) (PDMS) filled with silica particles. This technique which probes the motion of the hydrogen atoms has been extensively used to study the local dynamics of polymeric materials. In this paper we show that QENS provides detailed information on the reduced mobility of chain segments in polymer-filler systems.QENS measurements were carried out on PDMS filled with hydrophilic Aerosil with different specific surface area (average diameter 7 and 20 nm). Detailed data analysis indicates that the QENS spectra of the polymer-filler composites can be described by the sum of two contributions: (a) a quasielastic component due to chains not affected by the presence of the fillers and (b) an elastic term from those chain segments strongly affected by the presence of fillers. The latter depends on the specific surface area of the particles and their weight fraction in the composite.

2021 ◽  
Vol 1017 ◽  
pp. 11-20
Author(s):  
Evgeny A. Shoshin ◽  
Valeria V. Strokova ◽  
Zheng Mao Ye

Silicate micro- and nano-additives are multifunctional in relation to cement systems. Their application can solve a wide range of technological problems while maintaining the economic efficiency of technical solutions. The effect of silicate additives and fillers is determined by their level of dispersion, due to which the technologies for producing nano- and submicro-sized dispersed materials are being developed. The combination of mechanochemical synthesis of modified calcium hydrosilicates with subsequent thermolysis makes it possible to produce calcium silicate dispersions (SCD), which differ in polymodality of the fractional composition including submicro (10–7–10–6 m) and microdimensional (≥10–6 m) modes. The main element of the technology is the use of modifying carbohydrate, which acts as a stabilizer of hydrated phases of silicates. A comparative study of SCD produced using sucrose (sSCD) and lactose (lSCD) revealed the effect of these carbohydrates on the properties of sSCD and lSCD, as well as their effectiveness as a component of cementitious composite binder. It was found that the level of adsorption of modifying carbohydrate determines the physical properties of SCD (granulometry, specific surface area). The relatively high residual content of free sucrose (0.24%) in the composition of sSCD prevents the consolidation of silicates nanoparticles formed during the thermolysis, causes a high content of submicro sized fractions and a high specific surface area with sSCD (26.3 ± 0.7 m2/g). Lactose is absorbed by the silicate phase; the residual content of free lactose does not exceed 0.028% of lSCD. The low content of stabilizing carbohydrate contributes to the development of nanoparticle consolidation, a decrease in the specific surface area of lSCD to 13.0 ± 0.2 m2/g and content of submicrosized fractions. The residual content of free carbohydrates and particle size characteristics of sSCD and lSCD determine the nature of their influence on Cement-SCD-based concrete setting and hardening. The presence of residual sucrose in the composition of sSCD and fine fractions determines the competitive nature of the processes of retardation of hardening and acceleration of hardening of the cement system due to the nucleation effect, as a result of which the curve of the setting time is extreme. In addition, the inhibitory effect of sucrose reduces the strength of concrete on the 7th day. By the 28th day, the inhibitory effect of sucrose has been overcome, and concrete samples demonstrate an 18% increase in compressive strength with a sSCD content of 30%. The low content of residual free lactose in the composition of lSCD causes the nucleation effect. As a result, there is a monotonous reduction in the setting time of concrete mix with an increase in the content of lSCD in the composition of HF, as well as a significant increase in concrete strength (up to 127%) on the 7th day. At the same time, on the 28th day the strength of concrete increases slightly


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1067 ◽  
Author(s):  
Vyacheslav V. Rodaev ◽  
Svetlana S. Razlivalova ◽  
Andrey O. Zhigachev ◽  
Vladimir M. Vasyukov ◽  
Yuri I. Golovin

For the first time, zirconia nanofibers with an average diameter of about 75 nm have been fabricated by calcination of electrospun zirconium acetylacetonate/polyacrylonitrile fibers in the range of 500–1100 °C. Composite and ceramic filaments have been characterized by scanning electron microscopy, thermogravimetric analysis, nitrogen adsorption analysis, energy-dispersive X-ray spectroscopy, and X-ray diffractometry. The stages of the transition of zirconium acetylacetonate to zirconia have been revealed. It has been found out that a rise in calcination temperature from 500 to 1100 °C induces transformation of mesoporous tetragonal zirconia nanofibers with a high specific surface area (102.3 m2/g) to non-porous monoclinic zirconia nanofibers of almost the same diameter with a low value of specific surface area (8.3 m2/g). The tetragonal zirconia nanofibers with high specific surface area prepared at 500 °C can be considered, for instance, as promising supports for heterogeneous catalysts, enhancing their activity.


2012 ◽  
Vol 6 (5) ◽  
pp. 939-951 ◽  
Author(s):  
N. Calonne ◽  
C. Geindreau ◽  
F. Flin ◽  
S. Morin ◽  
B. Lesaffre ◽  
...  

Abstract. We used three-dimensional (3-D) images of snow microstructure to carry out numerical estimations of the full tensor of the intrinsic permeability of snow (K). This study was performed on 35 snow samples, spanning a wide range of seasonal snow types. For several snow samples, a significant anisotropy of permeability was detected and is consistent with that observed for the effective thermal conductivity obtained from the same samples. The anisotropy coefficient, defined as the ratio of the vertical over the horizontal components of K, ranges from 0.74 for a sample of decomposing precipitation particles collected in the field to 1.66 for a depth hoar specimen. Because the permeability is related to a characteristic length, we introduced a dimensionless tensor K*=K/res2, where the equivalent sphere radius of ice grains (res) is computed from the specific surface area of snow (SSA) and the ice density (ρi) as follows: res=3/(SSA×ρi. We define K and K* as the average of the diagonal components of K and K*, respectively. The 35 values of K* were fitted to snow density (ρs) and provide the following regression: K = (3.0 ± 0.3) res2 exp((−0.0130 ± 0.0003)ρs). We noted that the anisotropy of permeability does not affect significantly the proposed equation. This regression curve was applied to several independent datasets from the literature and compared to other existing regression curves or analytical models. The results show that it is probably the best currently available simple relationship linking the average value of permeability, K, to snow density and specific surface area.


2010 ◽  
Vol 1256 ◽  
Author(s):  
Girija Shankar Chaubey ◽  
Yuan Yao ◽  
Julien Pierre Amelie Makongo Mangan ◽  
Pranati Sahoo ◽  
Pierre F. P. Poudeu ◽  
...  

AbstractA simple method is reported for the synthesis of monodispersed HfO2 nanoparticles by the ammonia catalyzed hydrolysis and condensation of hafnium (IV) tert-butoxide in the presence of surfactants at room temperature. Transmission electron microscopy shows faceted nanoparticles with an average diameter of 3-4 nm. As-synthesized nanoparticles are amorphous in nature and crystallize upon moderate heat treatment. The HfO2 nanoparticles have a narrow size distribution, large specific surface area and good thermal stability. Specific surface area was about 239 m2/g on as-prepared nanoparticle samples while those annealed at 500 °C have specific surface area of 221 m2/g indicating that there was no significant increase in particle size. This result was further confirmed by TEM images of nanoparticles annealed at 300 °C and 500 °C. X-ray diffraction studies of the crystallized nanoparticles revealed that HfO2 nanoparticles were monoclinic in structure. The synthetic procedure used in this work can be readily modified for large scale production of monodispersed HfO2 nanoparticles.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Bronisław Psiuk ◽  
Anna Gerle ◽  
Małgorzata Osadnik ◽  
Andrzej Śliwa

The fine-pored materials represent a wide range of applications and searches are being continued to develop methods of their manufacturing. In the article, based on measurements on fine-grained powders of Al2O3, TiO2, and SiO2, it has been demonstrated that gelcasting can be relatively simple method of obtaining of nanoporous materials with high values of both specific surface area and open porosity. The powders were dispersed in silica sol, and the gelling initiator was NH4Cl. The usefulness of experiment design theory for developing of fine-pored materials with high porosity and specific surface area was also shown.


2019 ◽  
Vol 58 (6) ◽  
pp. 97-103
Author(s):  
Igor N. Tanutrov ◽  
◽  
Marina N. Sviridova ◽  
Sergey A. Lyamkin ◽  
Yury A. Chesnokov ◽  
...  

With the aim of improving the technology of co-processing of red mud (RM) and oily mill scale free (OMS) using co-temporal methods and apparatus, including using equipment of the center «Ural-M», studied the physico-chemical properties of industrial wastes. The main components of RM are: Fe (35.7%) in the form of hematite and complex hydroalumination, Ca (11.0%) in the form of calcite and hydro-aluminosilicates, Al (6.8%) and Si (4.7%) in the composition of hydroalumination, Na (2.8%) in the form of hydroalumination, carbonate and hydroxide, Ti (2.5%) in the form of rutile. The sludge moisture content was 11.9%. The main components of the OMS are: Fe (71%) in the form of magnetite, wustite and hematite with a very small amount of fayalite. The contents of Si (in the form of quartz), Al and P (non-forming phases) are within 1-3%. Humidity OMS – 16.3%, the content of indelible organic matter – 4.0%. Granulometric composition of RM is characterized by high dispersion. With an average diameter of 1.6 µm, all particle sizes are in the range of 0.5-12 µm. Granulometric composition of OMS is characterized by complexity. With an average diameter of 8.6 µm, maxima of 0.9 µm and 15 µm and a minimum of about 1.2 µm are observed in the particle size distribution. The specific surface area of the materials is equal to RM 23.7 m2/g, and OMS – 1.9 m2/g. The change of waste properties after exposure to aqueous solutions of alkalis and acids neutralizing the effect of organic (OMS) and alkaline (RM) surface compounds was studied. Neutralization of aqueous sus¬pension with HCl solution leads to removal of alkaline film from the surface. As a result of the impact of reagents, there is a decrease in the content of water-soluble components in the processing products. At the same time, the average particle sizes of RM and OMS increase to 2 and 14 µm, respectively, and the specific surface area to 25.7 and 2.3 m2/g. The distribution of particle size of RM is almost constant, and the OMS is approximately 5 and 10% of the smoothed maximum and minimum in the area of at least 0.5 and 15 µm.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4445 ◽  
Author(s):  
Zuzana Jankovská ◽  
Marek Večeř ◽  
Ivan Koutník ◽  
Lenka Matějová

Waste scrap tyres were thermally decomposed at the temperature of 600 °C and heating rate of 10 °C·min−1. Decomposition was followed by the TG analysis. The resulting pyrolytic carbon black was chemically activated by a KOH solution at 800 °C. Activated and non-activated carbon black were investigated using high pressure thermogravimetry, where adsorption isotherms of N2, CO2, and cyclohexane were determined. Isotherms were determined over a wide range of pressure, 0.03–4.5 MPa for N2 and 0.03–2 MPa for CO2. In non-activated carbon black, for the same pressure and temperature, a five times greater gas uptake of CO2 than N2 was determined. Contrary to non-activated carbon black, activated carbon black showed improved textural properties with a well-developed irregular mesoporous-macroporous structure with a significant amount of micropores. The sorption capacity of pyrolytic carbon black was also increased by activation. The uptake of CO2 was three times and for cyclohexane ten times higher in activated carbon black than in the non-activated one. Specific surface areas evaluated from linearized forms of Langmuir isotherm and the BET isotherm revealed that for both methods, the values are comparable for non-activated carbon black measured by CO2 and for activated carbon black measured by cyclohexane. It was found out that the N2 sorption capacity of carbon black depends only on its specific surface area size, contrary to CO2 sorption capacity, which is affected by both the size of specific surface area and the nature of carbon black.


2020 ◽  
Vol 12 (21) ◽  
pp. 8822
Author(s):  
Andrzej Jarosinski ◽  
Piotr Radomski ◽  
Lukasz Lelek ◽  
Joanna Kulczycka

The paper presents research on a method of obtaining magnesium hydroxide from magnesium sulphate salts and NaOH. In order to acquire the desired and controlled properties, the method of precipitating in aqueous solutions by introducing a NaOH solution into a solution of MgSO4 has been applied. To get as stable a product as possible with graining, the introduction of NaOH takes place at a constant flow rate. In order to identify the environmental impact of the developed process, a life cycle assessment (LCA) has been made. The use of the proposed method for the synthesis of Mg(OH)2 incorporating washing with 25% ammonia solution and acetone enabled a product with a high specific surface area. The Mg(OH)2 obtained was characterised by a higher specific surface area than commercially available magnesium hydroxides that are used as additives for flame retardants in polymeric materials. This allows the material to be used as an anti-pyrogen for a wider group of polymeric materials. For the LCA analysis, two scenarios were assumed, from which the basic one included recovery of ammonia and acetone. The environmental analysis carried out confirmed the validity of this assumption, as it was stated that the main part of the impact was connected with the supply chain for the process examined.


2020 ◽  
Vol 989 ◽  
pp. 543-547
Author(s):  
K.D. Naumov ◽  
Vladimir G. Lobanov

In present article gold cementation features from cyanide solutions using dendritic zinc powders are studied. The powders were obtained by electroextraction from alkaline solutions. Powders with different physical properties were obtained by means of change in current density (from 0.5 to 2 A/m2) and NaOH concentration in solution (from 100 to 400 g/dm3) at the constant zinc concentration (10 g/dm3). The physical properties of mentioned powders were studied using SEM (Jeol JSM-6390LA), BET (Gemini VII 2390) and laser diffraction (Sympatec HELOS & RODOS). It is shown that electrolytic powders have high specific surface area, which is 1.8–2.6 times larger than the surface area of ​​the zinc powder currently used for cementation. At that electrolytic powders particle size is 8-22 times larger than the particle size of powder currently used for cementation. The reason of high specific surface area is the electrolytic zinc powders dendritic structure. It was found that the obtained powders precipitate gold from cyanide solutions with a greater efficiency in a wide range of productivity. Laboratory unit simulating Merrill-Crow technology was used for cementation. Immediately ahead conducting the experiments, Na2SO3 was added to the solution in excess to remove dissolved oxygen. Zinc powders were plated by dendritic lead before loading into the laboratory setup by cementation. Lead was added as acetate (Pb (CH3COO)2). The consumption of lead acetate was 10% by weight of zinc. Correlation between the powders physical properties and the gold extraction is shown.


2014 ◽  
Vol 614 ◽  
pp. 11-16 ◽  
Author(s):  
Kristine Salma-Ancane ◽  
Liga Stipniece ◽  
Janis Locs ◽  
Vitalijs Lakevičs ◽  
Zilgma Irbe ◽  
...  

The aim of this study was to investigate the influence of biogenic and synthetic starting materials on properties of porous hydroxyapatite (HAp) bioceramics. HAp powders were synthesized by modified precipitation method using biogenic calcium carbonates (ostrich (Struthio camelus) egg shells, hen (Gallus gallus domesticus) egg shells, snail (Viviparus contectus) shells) and synthetic calcium oxides (Sigma-Aldrich and Fluka). Specific surface area, molecular structure and morphology of obtained powders were determined. As-synthesized HAp powders had a varied specific surface area with a wide range from 83 to 150 m2g-1 depending on CaO source. Porous bodies of HAp were prepared by in situ viscous mass foaming with NH4HCO3 as pore forming agent. Foamed and dried green bodies were sintered at 1100 °C. The obtained bioceramics were investigated using Archimedes method, field emission scanning electron microscopy and Brunauer-Emmett-Teller method. There are considerable differences between porous HAp bioceramics structures prepared from different sources of CaO. The choice of starting material substantially affects the macro-and microstructure of prepared porous bioceramics.


Sign in / Sign up

Export Citation Format

Share Document