Thin Films of Antimony-Tin Oxide as Counter-Electrodes for Proton Working Electrochromic Devices

2001 ◽  
Vol 692 ◽  
Author(s):  
N. Naghavi ◽  
C. Marcel ◽  
L. Dupont ◽  
A. Rougier ◽  
J-M. Tarascon

AbstractWe report here on thin films proton-working electrochromic devices based on the wellknown tungsten oxide as the coloring electrode, and Antimony Tin Oxide (ATO) as the ionstorage counter-electrode. We show that films deposited by Pulsed Laser Deposition (PLD) technique have an apparent Sb solubility up to 70 at %, and exhibit unusual electrochromic properties. Through potentiostatic tests we'll demonstrate that depending on the composition which influences film morphology, the Sn-Sb-O films could either present a faradic or a capacitive-like behavior, associated to a color or a neutral switching over a wide range of potentials, respectively. The structural properties of ATO films are characterized by X-ray diffraction and transmission electron microscopy (TEM). Electrochromic behavior is studied by means of cyclic voltamperometry coupled with ex situ optical transmittance measurements in the visible range. The maximum proton-storage capacity is observed for ATO films containing 40–50 at % Sb, while being quasi-neutral when switching over a wide range of potentials. These compositions are finally retained for the assembly of our WO3/proton-electrolyte/ATO devices, whose performances are reported.

2011 ◽  
Vol 35 (1) ◽  
pp. 99-111 ◽  
Author(s):  
Fatema Rezwana Chowdhury ◽  
Shamima Choudhury ◽  
Firoz Hasan ◽  
Tahmina Begum

Thin films of Tin Oxide (SnO2), having thickness of 200 nm, were formed on to glass substrates by thermal evaporation of high-purity SnO2 powder in vacuum at various substrate temperatures (TS), ranging between 25 and 200°C. SnO2 films with varying thickness were also prepared for a fixed TS = 100°C. Further, doping of SnO2 films with Indium (In) was accomplished through solid state diffusion process by successive deposition of SnO2 and In films and subsequent annealing at 200°C for 10 minutes. Both undoped and doped films were characterized optically by UV-VIS-NIR spectrophotometry in the photon wavelength ranging from 300 to 2500 nm. In the visible photon wavelength range, the average optical transmittance (T%) of the films with varying TS was found to be 85%. The maximum value of T % was found to be 89 % around the wavelength of 700nm. The variation of absorption coefficient with photon energy in the fundamental absorption region is the steepest for TS = 100°C. The sub-band gap (SBG) absorption is also minimum for this Ts. A fluctuating behavior of the band gap energy (Eg) with Ts is observed attaining the highest value of 3.59 eV for Ts = 100°C. The band gap energy increases with thickness but T% in the visible range decreases. The T% in the visible range varies inversely with indium doping, being highest for undoped films. The Eg increases upto 2 wt% In doping and gradually decreases for enhanced doping. It seems reasonable to conclude that In doping does not bring favorable optical characteristics. Undoped SnO2 films having thickness of 200 nm and formed at substrate temperature of 100°C yield essential acceptable properties for photovoltaic applications.DOI: http://dx.doi.org/10.3329/jbas.v35i1.7975Journal of Bangladesh Academy of Sciences, Vol.35, No.1, 99-111, 2011


2013 ◽  
Vol 1552 ◽  
pp. 89-94 ◽  
Author(s):  
Abigail Halim ◽  
Rosario A. Gerhardt

ABSTRACTCommercially available antimony tin oxide (ATO) nanoparticles were dispersed in water using tetramethylammonium hydroxide (TMAH) as a dispersing agent and deposited onto glass substrates by spin coating. Films of one to five layers were made. These thin films were characterized using impedance spectroscopy and ultraviolet-visible spectroscopy to obtain their sheet resistances and optical transmittance, respectively. The films displayed sheet resistances around 105-106 kΩ/☐ and optical transmittance in the near infrared to near ultraviolet range above 95%. Films were then made using a higher concentration ATO solution and found to achieve sheet resistances on the order of 102 kΩ/☐ but had decreased transmittance as low as 65% at some wavelengths. Impedance measurements, along with optical micrographs, were taken at different locations on the films. These experiments demonstrated that films of more than one layer showed greater uniformity. Additional sets of films were also produced with varying substrate preparation and dispersion deposition parameters. Aside from dispersion concentration, high humidity during film measurement was found to be the most crucial parameter for achieving low sheet resistances.


2018 ◽  
Vol 185 ◽  
pp. 00006
Author(s):  
Chia-Ching Wu ◽  
Chien-Chen Diao

High-quality transparent conductive indium tin oxide (ITO) thin films were deposited on glass substrates using radio frequency sputtering method. The structure and electrical and optical properties of the ITO thin films were mainly investigated. The ITO thin films showed strong diffraction peak having a preferred orientation along the [111] direction as the deposition temperature at 120 to 160 °C. In the transmission spectra, the optical transmittance increased in the visible range as the deposition temperature increased from RT to 160 °C. A minimum resistivity of 3.06×10-3 Ω-cm was obtained for the ITO thin film deposition at 160 °C.


Coatings ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 248 ◽  
Author(s):  
Benjamin Schumm ◽  
Thomas Abendroth ◽  
Saleh A. Alajlan ◽  
Ahmed M. Almogbel ◽  
Holger Althues ◽  
...  

Multilayered nanocoatings allow outstanding properties with broad potential for glazing applications. Here, we report on the development of a multilayer nanocoating for zinc oxide (ZnO) and antimony doped tin oxide (ATO). The combination of ZnO and ATO thin films with their promising optical properties is a cost-efficient alternative for the production of energy-efficient glazing. It is an effective modification of the building envelope to reduce current high domestic demand of electrical power for air conditioning, especially in hot climates like Saudi Arabia. In this paper, we report the development of a nanocoating based on the combination of ZnO and ATO. Principle material and film investigations were carried out on lab-scale by dip coating with chemical solution deposition (CSD), while with regard to production processes, chemical vapor deposition (CVD) processes were evaluated in a second stage of the film development. It was found that with both processes, high-quality thin films and multilayer coatings with outstanding optical properties can be prepared. While keeping the optical transmission in the visible range at around 80%, only 10% of the NIR (near infrared) and below 1% of UV (ultraviolet) light passes these coatings. However, in contrast to CSD, the CVD process allows a free combination of the multilayer film sequence, which is of high relevance for production processes. Furthermore, it can be potentially integrated in float glass production lines.


2014 ◽  
Vol 997 ◽  
pp. 337-340
Author(s):  
Jian Guo Chai

Indium tin oxide (ITO) films were deposited on glass substrates by magnetron sputtering. Properties of ITO films showed a dependence on substrate temperature. With an increasing in substrate temperature, the intensity of XRD peak increased and the grain size showed an evident increasing. The results show that increasing substrate temperature remarkably improves the characteristics of the films. The sheet resistance of 10 Ω/sq and the maximum optical transmittance of 90% in the visible range with optimized conditions can be achicved. The results of experiment demonstrate that high-quality films have been achieved by this technique.


2008 ◽  
Vol 368-372 ◽  
pp. 524-525 ◽  
Author(s):  
Jian Li ◽  
Shan Liu ◽  
Wei Pan

Co-doped tin oxide thin films were prepared using spin-coating method. Variation of doping content on the magnetic property and optical property were measured. XRD and magnetic measurement shows that Co solubility limit in SnO2 is less than 3%. When the doping content is lower than 3%, the films show good optical transmittance. When the doping content is reached to 10%, the optical transmittance became lower. When the solution is diluted, the optical transmittance drops more slowly.


Author(s):  
Mehmet Oguz Guler ◽  
Mirac Alaf ◽  
Deniz Gultekin ◽  
Hatem Akbulut ◽  
Ahmet Alp

Tin oxide was the first transparent conductor to have achieved significant commercialization. SnO2 is an n-type semiconductor with an optical band gap of about 3.6 eV in poly crystalline form. One of the main reasons for the wide use is its rather desirable characteristic of having both, high optical transmittance and high electrical conductivity. Under optimum deposition conditions, tin oxide crystallizes in the tetragonal (rutile) structure. In this study, nano crystalline thin oxide conductive thin films has been manufactured by thermal evaporation techniques onto steel substrates using metallic tin targets and oxidation kinetics have been studied after D.C. plasma oxidation by using XRD (X-Ray Diffraction). The activation energy of SnO and SnO2 from Sn phase transformations has also been studied.


2006 ◽  
Vol 11-12 ◽  
pp. 167-170 ◽  
Author(s):  
Lei Miao ◽  
T. Jiang ◽  
Sakae Tanemura ◽  
Masaki Tanemura ◽  
M. Mori ◽  
...  

Photochromic material Ag-TiO2 thin films are fabricated on quartz substrate by dual -target helicon magnetron sputtering. The phototchromic behavior is investigated for the sample loaded with 90% Ag. Spheres, ellipsoids and polyhedra shape of Ag particles with wide range size (5∼100 nm) are dispersed in the TiO2 amorphous matrix observed by transmission electron microscopy. The spectral hole burned by the irradiation of laser at the wavelength 532 nm can be explained by a particle-plasmon-assisted electron transfer from Ag nanoparticles to TiO2 and subsequent trapping by adsorbed molecular oxygen. Moreover, the mechanism of the slow recovery after photochromism is suggested as a slow thermal release of electrons from oxygen trapping centers and subsequent capture into the Ag nanoparticles.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1604
Author(s):  
Svitlana Petrovska ◽  
Ruslan Sergiienko ◽  
Bogdan Ilkiv ◽  
Takashi Nakamura ◽  
Makoto Ohtsuka

Amorphous aluminum-doped indium tin oxide (ITO) thin films with a reduced indium oxide content of 50 mass% were manufactured by co-sputtering of ITO and Al2O3 targets in a mixed argon–oxygen atmosphere onto glass substrates preheated at 523 K. The oxygen gas flow rate and heat treatment temperature effects on the electrical, optical and structural properties of the films were studied. Thin films were characterized by means of a four-point probe, ultraviolet–visible-infrared (UV–Vis-IR) spectroscopy and X-ray diffraction. Transmittance of films and crystallization temperature increased as a result of doping of the ITO thin films by aluminum. The increase in oxygen flow rate led to an increase in transmittance and hindering of the crystallization of the aluminum-doped indium saving ITO thin films. It has been found that the film sputtered under optimal conditions showed a volume resistivity of 713 µΩcm, mobility of 30.8 cm2/V·s, carrier concentration of 2.9 × 1020 cm−3 and transmittance of over 90% in the visible range.


Sign in / Sign up

Export Citation Format

Share Document