Radiation Induced Amorphous Transformation in Intermetallic Compounds

1981 ◽  
Vol 7 ◽  
Author(s):  
J. L. Brimhall ◽  
H. E. Kissinger ◽  
L. A. Charlot

ABSTRACTIntermetallic compounds and ordered phases in the Ti-Ni, Ti-Fe, Re-Ta, and Mo-Ni systems became amorphous after high energy, ion irradiation. Compounds in the Ni-Al and Fe-Al systems remained crystalline and formed dislocation networks after similar irradiation. The ease of amorphous formation correlated best with the lack of solubility within the phase field. The high internal energy of the defect state in these limited solubility alloys is believed responsible for the tendency to transform to an amorphous state. A correlation with other properties such as atom size ratio or outer electron concentration was not found.

1988 ◽  
Vol 3 (5) ◽  
pp. 840-844 ◽  
Author(s):  
E. H. Lee ◽  
E. A. Kenik

The nucleation and amorphization of radiation-induced (G) and radiation-enhanced (η) phases in a silicon- and titanium-modified austenitic stainless steel have been studied under nickel-ion irradiation. These silicon- and nickel-enriched phases form under high-temperature (950 K) irradiation as the result of radiation-induced segregation to radiation-produced interstitial dislocation loops. Availability of carbon promotes the formation of η phase relative to G phase. Under lower temperature (450 K) irradiation, G and η phases are amorphized without significant change in composition of metallic elements. Two carbide phases (MC, M23C6) remain crystalline for the same irradiation conditions. The amorphization of the silicides may result from (1) radiation damage increasing their free energy above that of the amorphous state or (2) direct formation of the amorphous phase in the damage cascade.


2020 ◽  
Vol 4 (1) ◽  
pp. 17 ◽  
Author(s):  
Akihiro Iwase ◽  
Fuminobu Hori

When materials are irradiated with high-energy ions, their energies are transferred to electrons and atoms in materials, and the lattice structures of the materials are largely changed to metastable or non-thermal equilibrium states, causing the modification of several physical properties. There are two processes for the material modification by ion irradiation; one is “the irradiation-enhanced process”, and the other is “the irradiation-induced process”. In this review, two kinds of recent results for the microstructural changes and the modifications of mechanical properties will be summarized: one is the hardness modification of dilute aluminum alloys, which is a result of the irradiation-enhanced process, and the other is the hardness modification of Ni-based intermetallic compounds as a result of the irradiation-induced process. The effect of the subsequent thermal treatment on the microstructures and the hardness for ion-irradiated dilute aluminum alloys is quite different from that for Ni-based intermetallic compounds. This result reflects the difference between the irradiation-enhanced process and the irradiation-induced process. Finally, possibilities of the ion irradiation and subsequent thermal treatment to industrial applications will also be discussed.


1991 ◽  
Vol 235 ◽  
Author(s):  
R. C. Birtcher ◽  
L. M. Wang

ABSTRACTChanges induced by 1.5 MeV Kr ion irradiation of both U3Si and U3Si2 have been followed by in situ transmission electron microcopy. When irradiated at sufficiently low temperatures, both alloys transform from the crystalline to the amorphous state. When irradiated at temperatures above the temperature limit for ion-beam amorphization, both compounds disorder, with the Martensite twin structure in U3Si disappearing from view in TEM. Prolonged irradiation of the disordered crystalline phases results in nucleation of small crystallites within the initially large crystal grains. The new crystallites increase in number during continued irradiation until a fine grain structure is formed. Electron diffraction yields a powder-like diffraction pattern that indicates a random alignment of the small crystallites. During a second irradiation at lower temperatures, the small crystallizes retard amorphization. After 2 dpa at high temperatures, the amorphization dose is increased by over twenty times compared to that of initially unirradiated material.


2014 ◽  
Vol 783-786 ◽  
pp. 1872-1879
Author(s):  
Efraín Hernández-Rivera ◽  
Veena Tikare ◽  
Lu Min Wang

A hybrid model of microstructural evolution of a coupled multi–field system that is subjected to ion irradiation is presented. Materials exposed to low energy ion irradiation experience a wide range of radiation effects, e.g. surface roughening and chemical segregation. The hybrid model combines Monte Carlo methods and a phase field model to simulate the kinetic and radiation-induced processes that lead to radiation induced chemical segregation with associated phase transformations of a binary system by differential diffusivity.


1999 ◽  
Vol 592 ◽  
Author(s):  
M. Ceschia ◽  
A. Paccagnella ◽  
A. Cester ◽  
G. Ghidini ◽  
J. Wyss

ABSTRACTMetal Oxide Semiconductor (MOS) capacitors with ultra-thin oxides have been irradiated with ionising particles (8 MeV electrons or Si, Ni, and Ag high energy ions), featuring various Linear Energy Transfer (LET) ranging over 4 orders of magnitude. Different oxide fields (Fbias) were applied during irradiation, ranging between flat-band and 3 MV/cm. We measured the DC Radiation Induced Leakage Current (RILC) at low fields (3-6 MV/cm) after electron or Si ion irradiation. RILC was the highest in devices biased at flat band during irradiation. In devices irradiated with higher LET ions (Ni and Ag) we observed the onset of Soft-Breakdown phenomena. Soft-Breakdown current increases with the oxide field applied during the stress.


1997 ◽  
Vol 12 (7) ◽  
pp. 1766-1770 ◽  
Author(s):  
Ning Yu ◽  
Ram Devanathan ◽  
Kurt E. Sickafus ◽  
Michael Nastasi

Ion-irradiation was observed to transform MgAl2O4 spinel first to a metastable crystalline phase and then to an amorphous phase at cryogenic temperatures. Elastic stiffening of 15% occurred upon formation of the metastable crystalline phase. A second transformation from the metastable crystalline spinel to an amorphous state was accompanied by elastic softening of 25% relative to unirradiated spinel. This phase transformation behavior in spinel appears to be different from that in intermetallic compounds where only elastic softening associated with radiation damage accumulation is observed. A two-stage radiation damage model is proposed to explain the observed phase transformations.


Author(s):  
Charles W. Allen

Irradiation effects studies employing TEMs as analytical tools have been conducted for almost as many years as materials people have done TEM, motivated largely by materials needs for nuclear reactor development. Such studies have focussed on the behavior both of nuclear fuels and of materials for other reactor components which are subjected to radiation-induced degradation. Especially in the 1950s and 60s, post-irradiation TEM analysis may have been coupled to in situ (in reactor or in pile) experiments (e.g., irradiation-induced creep experiments of austenitic stainless steels). Although necessary from a technological point of view, such experiments are difficult to instrument (measure strain dynamically, e.g.) and control (temperature, e.g.) and require months or even years to perform in a nuclear reactor or in a spallation neutron source. Consequently, methods were sought for simulation of neutroninduced radiation damage of materials, the simulations employing other forms of radiation; in the case of metals and alloys, high energy electrons and high energy ions.


Author(s):  
H. Watanabe ◽  
B. Kabius ◽  
B. Roas ◽  
K. Urban

Recently it was reported that the critical current density(Jc) of YBa2Cu2O7, in the presence of magnetic field, is enhanced by ion irradiation. The enhancement is thought to be due to the pinning of the magnetic flux lines by radiation-induced defects or by structural disorder. The aim of the present study was to understand the fundamental mechanisms of the defect formation in association with the pinning effect in YBa2Cu3O7 by means of high-resolution electron microscopy(HRTEM).The YBa2Cu3O7 specimens were prepared by laser ablation in an insitu process. During deposition, a substrate temperature and oxygen atmosphere were kept at about 1073 K and 0.4 mbar, respectively. In this way high quality epitaxially films can be obtained with the caxis parallel to the <100 > SrTiO3 substrate normal. The specimens were irradiated at a temperature of 77 K with 173 MeV Xe ions up to a dose of 3.0 × 1016 m−2.


Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


Author(s):  
L. Hultman ◽  
C.-H. Choi ◽  
R. Kaspi ◽  
R. Ai ◽  
S.A. Barnett

III-V semiconductor films nucleate by the Stranski-Krastanov (SK) mechanism on Si substrates. Many of the extended defects present in the films are believed to result from the island formation and coalescence stage of SK growth. We have recently shown that low (-30 eV) energy, high flux (4 ions per deposited atom), Ar ion irradiation during nucleation of III-V semiconductors on Si substrates prolongs the 1ayer-by-layer stage of SK nucleation, leading to a decrease in extended defect densities. Furthermore, the epitaxial temperature was reduced by >100°C due to ion irradiation. The effect of ion bombardment on the nucleation mechanism was explained as being due to ion-induced dissociation of three-dimensional islands and ion-enhanced surface diffusion.For the case of InAs grown at 380°C on Si(100) (11% lattice mismatch), where island formation is expected after ≤ 1 monolayer (ML) during molecular beam epitaxy (MBE), in-situ reflection high-energy electron diffraction (RHEED) showed that 28 eV Ar ion irradiation prolonged the layer-by-layer stage of SK nucleation up to 10 ML. Otherion energies maintained layer-by-layer growth to lesser thicknesses. The ion-induced change in nucleation mechanism resulted in smoother surfaces and improved the crystalline perfection of thicker films as shown by transmission electron microscopy and X-ray rocking curve studies.


Sign in / Sign up

Export Citation Format

Share Document