Delamination Behavior of Cu-Low-k Stack Under Different Slurries

2003 ◽  
Vol 767 ◽  
Author(s):  
A. K. Sikder ◽  
S. Thagella ◽  
P. B. Zantye ◽  
Ashok Kumar

AbstractLower mechanical strength, reduced cohesive strength and lack of compatibility with other interconnect materials, are the major challenges involved in chemical mechanical polishing (CMP) of Cu metallization with ultra low-k materials as interlayer dielectrics. In this study we have investigated the polishing behavior of patterned Cu samples with underneath different low-k materials using two different slurries and a wide range of machine parameters. CMP micro tribometer was used to polish the samples with different rotations of platen (50 to 250 RPM) and down forces (1-6 PSI). Friction co-efficient and wear behavior were also investigated at different conditions. Optical and scanning electron microscopy was used to investigate the polished surface. It was observed that the two different Cu slurries used for polishing have marked effects on the polishing of Cu-low-k stack with respect to wear and delamination.

Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 207
Author(s):  
Eleonora Santecchia ◽  
Marcello Cabibbo ◽  
Abdel Magid Salem Hamouda ◽  
Farayi Musharavati ◽  
Anton Popelka ◽  
...  

The applications of aluminum and its alloys are still limited by low hardness and low wear resistance properties. Surface modifications, such anodizing and plasma electrolytic oxidation, represent a feasible way to overcome these drawbacks. In this study, discs of AA6082 were subjected to the so-called G.H.A. hard anodizing process leading to an anodized layer having a honeycomb-like structure. Samples having alumina layer thicknesses of 10, 50 and 100 μm were subjected to unidirectional dry sliding wear tests, using bearing steel and silicon nitride as counterbody materials. Surface and structure characterization of the samples were performed before and after the tribological tests, using a wide range of techniques; atomic force microscopy and scanning electron microscopy techniques were used before the wear tests. The wear scars were characterized by scanning electron microscopy, energy dispersive spectroscopy and Fourier transform infrared spectroscopy techniques. Results show that the different thickness of the anodized layer does not affect the pores dimensions but has an influence on the micrometric domains in which the pores are divided. These features coupled with the wear test conditions, show to have a strong influence on the wear behavior. The thinnest sample showed also the best performance against the ceramic counterbody.


2007 ◽  
Vol 546-549 ◽  
pp. 1699-1702
Author(s):  
Xi Ying Zhou ◽  
Liang He ◽  
Yan Hui Liu

Al-Cu-Fe quasicrystals powder was used to prepare the thin films on the surface of the A3 steel by the means of DMD-450 vacuum evaporation equipment. The thin films with different characterization were obtained through different parameters. The microstructures of the thin films were analyzed by Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Additionally, the nano-hardness and the modulus of the films are tested by MTS and Neophot micro-hardness meter. The results showed that the modulus of the films was about 160GPa. Nano hardness of the films was about 7.5 Gpa. The films consisted of CuAl2, AlCu3. The thickness and the micro-hardness of the films are improved. In same way, with the increase of the electric current, the thickness and the hardness of the films are also improved. Along with increase of the time and the electric current, the wear behavior of the films was improved. To some extent, the microstructure of films contained the quasicrystal phase of Al65Cu20Fe15.


2014 ◽  
Vol 915-916 ◽  
pp. 933-941 ◽  
Author(s):  
Zhong Jie Zhang ◽  
Chang Yu Lu ◽  
Wei Huang ◽  
Wei Sheng Guan ◽  
Yue Xin Peng

The effective remove to tetracycline still remains a big challenge for scientists. In this work, we used a new method for preparing functional magnetic CNTS with ferrite nanoparticles. A wide range of techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and magnetic measurements were applied to characterize the obtained Fe2O3/CNTs. Moreover, we have also studied the properties of adsorbent to tetracycline. In addition, we have found that the Fe2O3/CNTs are better reusable adsorbent than other traditional adsorbents by magnetic separation recycling method.


1993 ◽  
Vol 309 ◽  
Author(s):  
W.C. Shih ◽  
A.L. Greer ◽  
Y.Z. Xu ◽  
B.K. Jones

AbstractUnpassivated 1.4 mm long lines of Al-4wt.%Cu metallization have been successively imaged (by scanning electron microscopy) and electromigration stressed until failure. The resistance of lines, evolution of line microstructure and the development of electromigration damage are thus discontinuously recorded through the accelerated life-testing (260°C, 2 × 1010 A m-2). Correlations are made among microstructure evolution, electromigration damage development and line resistance. The probable mechanisms of damage development are discussed.


2019 ◽  
Vol 20 (2) ◽  
pp. 522-534
Author(s):  
T. Balinyan ◽  
L. Derecha ◽  
Yu. Nosatenko

The article considers the need for a comprehensive study of biological damage to fibrous materials by scanning electron microscopy. The main types and characteristics of fibers and fibrous materials, their types of damage, in particular, biological, and the mechanism of their formation are described. It is shown that with modern methods for studying morphological characteristics, the most effective is the method of scanning electron microscopy, which makes it possible to directly study the object in a wide range of magnifications. The use of scanning electron microscopy makes it possible to identify qualitatively new volumetric microsigns when conducting studies of fibrous materials. Biological damage agents (biofactors) are considered — microbiological (bacteria, microbes, fungi, blue-green algae), phytological (mosses, lichens, higher plants, algae), zoological (insects, birds, mammals). Attention is focused on the study of injuries caused by mold caused by moths, dogs, etc. Conducting a comprehensive study of various types of damage to materials of various fibrous nature allows us to obtain an information database, the possibility of differentiating chemical, mechanical, thermal and biological damage, identifying microsigns that individualize one or another object (factor) of action, influence, increasing the potential for obtaining trace information about the actual data and circumstances of the event in those cases when only by external morphological features of the diagnosis It is not possible to repair damage. The data obtained indicate the effectiveness of the chosen research area. The results of the studies are positive for creating the optimal research scheme, methods of microscopic studies of damage to materials of fibrous nature in order to solve diagnostic, identification and situational tasks of forensic examination.


Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 535 ◽  
Author(s):  
Min Tang ◽  
Yi-Liang Li

In this study, the crystal habits of pyrite in the volcanic hot springs from Kamchatka, Russia were surveyed using scanning electron microscopy. Pyrite crystals occur either as single euhedral crystals or aggregates with a wide range of crystal sizes and morphological features. Single euhedral crystals, with their sizes ranging from ~200 nm to ~40 µm, exhibit combinations of cubic {100}, octahedral {111}, and pyritohedral {210} and {310} forms. Heterogeneous geochemical microenvironments and the bacterial activities in the long-lived hot springs have mediated the development and good preservation of the complex pyrite crystal habits: irregular, spherulitic, cubic, or octahedral crystals congregating with clay minerals, and nanocrystals attaching to the surface of larger pyrite crystals and other minerals. Spherulitic pyrite crystals are commonly covered by organic matter-rich thin films. The coexistence of various sizes and morphological features of those pyrite crystals indicates the results of secular interactions between the continuous supply of energy and nutritional elements by the hot springs and the microbial communities. We suggest that, instead of a single mineral with unique crystal habits, the continuous deposition of the same mineral with a complex set of crystal habits results from the ever-changing physicochemical conditions with contributions from microbial mediation.


2020 ◽  
Vol 27 (11) ◽  
pp. 2050004
Author(s):  
HAMID GHANBARI ADIVI ◽  
IMAN EBRAHIMZADEH ◽  
MORTEZA HADI ◽  
MORTEZA TAYEBI

The pure iron and aluminum powders were milled with 3[Formula: see text]wt.% and 7[Formula: see text]wt.% of alumina nanoparticles in planetary ball mill in order to produce iron aluminide by mechanical alloying technique. The resulting powder mixture was sintered after the formation of iron aluminide by spark plasma sintering (SPS) method to achieve specimens with the highest densification. SPS technique was utilized on specimens under the condition of 40[Formula: see text]MPa pressure at 950∘C for 5[Formula: see text]min. The microstructures were analyzed after sintering using scanning electron microscopy and EDS analysis. The results indicated that the aluminide iron phase has been produced at high purity. The sintered specimens were treated under hardness and density tests, and it was characterized that the specimen included 3[Formula: see text]wt.% of alumina nanoparticles had the highest microhardness. Likewise, it was revealed that the unreinforced sample had a maximum relative density. The wear behavior of specimens was performed at 600∘C. The results of weight loss showed after 1000[Formula: see text]m of wear test, the weight loss of unreinforced specimen was reduced up to 0.21[Formula: see text]g while the specimen with 3[Formula: see text]wt.% of alumina nanoparticle indicated the lowest weight loss about 0.02[Formula: see text]g. The worn surfaces were evaluated by scanning electron microscopy which indicated that the main wear mechanism at high temperature included adhesive wear and delamination.


2020 ◽  
Vol 17 ◽  
Author(s):  
Sultanat ◽  
Anam Ansari ◽  
Mohd Qamar ◽  
Shafiullah ◽  
Sartaj Tabassum ◽  
...  

Background: Corticosteroids are important group of polycyclic compounds having a wide range of pharmacological and physiological properties. Thiopyran derivatives are important building blocks of many biologically active compounds. Objective: Keeping in mind the wide range of application of corticosteroid and thiopyran, herein we intend to develop a simple and efficient strategy to synthesize steroidal thiopyran derivatives starting with different commercially available corticosteroid and study their biological property. Materials and Methods: To achieve our aim, we employed a one-pot multicomponent synthesis of steroidal thiopyran derivatives by the reaction of corticosteriods, malononitrile and carbon disulphide in presence of triethyl amine as a catalyst. Results and Discussion : An array of novel thiopyran compounds were obtained with the highest product yield using Et3N. Scanning electron microscopy analysis manifested agglomeration pertaining to brick - shaped crystals of corticosteroid thiopyran. Synthesized compound were also found to be active as antibacterial agents. Conclusion: We describe a facile one-pot multicomponent synthesis of corticosteroid thiopyran derivatives which are found to possess antibacterial activity. Excellent yields of the products, simple work-up, easily available starting materials and non-chromatographic purification are some main advantages of this protocol.


2010 ◽  
Vol 10 (6) ◽  
pp. 2927-2935 ◽  
Author(s):  
W. C. Pfalzgraff ◽  
R. M. Hulscher ◽  
S. P. Neshyba

Abstract. We present the first clearly resolved observations of surfaces of growing and ablating hexagonal ice crystals using variable-pressure scanning electron microscopy. The ice surface develops trans-prismatic strands, separated from one another by distances of 5–10 μm. The strands are present at a wide range of supersaturations, but are most pronounced at temperatures near the frost point. Pyramidal facets consistent with Miller-Bravais indices of 1011, and possibly also 2021, are associated with ice growth under these conditions. A molecular-dynamics model of a free-standing ice Ih nanocolumn containing 8400 water molecules does not develop trans-prismatic strands, suggesting these features originate at larger spatial or temporal scales. The possible relevance of these surface features to cirrus ice is discussed.


Sign in / Sign up

Export Citation Format

Share Document