Smart Heterostructures Based on Solid Solution ZnCdHgTe

2003 ◽  
Vol 785 ◽  
Author(s):  
Galina M. Khlyap ◽  
Petro G. Sydorchuk ◽  
Jacek Polit ◽  
Macej Oszwaldowsky

ABSTRACTCurrent – voltage (IVC) and capacitance – voltage (CVC) of heterostructures (Cd, Zn)Te/ZnCdHgTe are studied for the first time. Thin films ZnxCdyHg1-x-yTe were grown on monocrystalline (111) CdTe and ZnTe substrates by PLE technology. Deposition was carried out on substrates held at temperatures near 290 K. The thickness of investigated films was estimated to be about 5 μm. Electric characteristics of the as-grown structures were examined under T = 77–290 K in the wide range of applied bias. All investigated samples have demonstrated diode-like IVC and CVC under test signal frequency f = 1 kHz. Heterostructures CdTe/ZnCdHgTe have exhibited a room temperature photosensitivity in spectral range 0.50–0.65 μm.

2004 ◽  
Vol 813 ◽  
Author(s):  
Galina M. Khlyap ◽  
Petro G. Sydorchuk ◽  
Jacek Polit

ABSTRACTThe effect of hydrogen treatment on room temperature electric properties of narrow-gap semiconductor thin films ZnxCdyHg1−z−yTe (0 < x < 0.50, 0.20 < y < 0.40) is investigated for the first time. ZnCdHgTe films of 2 – 5 [.proportional]m thickness were grown on glass substrates by pulsed laser deposition technique. As-grown films were thermally treated in the flow of molecular H2 at 200°C during 24 hours. Comparison between electric characteristics measured before and after hydrogenation showed sufficient changes of the film resistance and appearance of photosensitivity in the visible wavelength range. Study of current-voltage characteristics of the films revealed appearance and significant change of diode-like properties.


2002 ◽  
Vol 744 ◽  
Author(s):  
Galina Khlyap ◽  
Victor Brytan

ABSTRACTElectric field – induced effects are studied in thin films of amorphous Si grown by magnetron sputtering performed in continuous and pulse modes. Current-voltage characteristics are measured under the room temperature in different spectral ranges. It is shown that the investigated dependencies are of exponential character in all range of applied bias. Good photosensitivity was revealed by the samples prepared in continuous mode in the near-IR and visible interval. The samples grown by the pulse magnetron technology were shown room-temperature photosensitivity in near-IR range after 2000C hydrogenation.


2002 ◽  
Vol 719 ◽  
Author(s):  
Galina Khlyap

AbstractRoom-temperature electric investigations carried out in CO2-laser irradiated ZnCdHgTe epifilms revealed current-voltage and capacitance-voltage dependencies typical for the metal-semiconductor barrier structure. The epilayer surface studies had demonstrated that the cell-like relief has replaced the initial tessellated structure observed on the as-grown samples. The detailed numerical analysis of the experimental measurements and morphological investigations of the film surface showed that the boundaries of the cells formed under the laser irradiation are appeared as the regions of accumulation of derived charged defects of different type of conductivity supplying free charge carriers under the applied electric field.


2021 ◽  
Author(s):  
EMINE ALDIRMAZ ◽  
M. Güler ◽  
E. Güler

Abstract In this study, the Cu-23.37%Zn-13.73%Al-2.92%Mn (at.%) alloy was used. Phase identification was performed with the Scanning electron microscope (SEM), and energy-dispersive X-ray (EDX). We observed in the austenite phase in Cu-23.37%Zn-13.73%Al-2.92%Mn (at.%) alloy. To produce a new Schottky diode, CuZnAlMn alloy was exploited as a Schottky contact on p-type semiconductor silicon substrate. To calculate the characteristics of the produced diode, current-voltage (I-V), capacitance-voltage (C-V) and conductance-voltage (G-V) analyzes were taken at room temperature (300 K), in the dark and under various lights. Using electrical measurements, the diode's ideality factor (n), barrier height (Φb), and other diode parameters were calculated. Besides, the conductance / capacitance-voltage (G/C-V) characteristics of the diode were studied and in a wide frequency interval at room temperature. Also, the capacitance and conductance values strongly ​​ rely on the frequency. From the present experimental results, the obtained diode can be used for optoelectronic devices.


2020 ◽  
Vol 6 (3) ◽  
pp. 113-123
Author(s):  
Arnold S. Borukhovich

The results of the creation of a high-temperature spin injector based on EuO: Fe composite material are discussed. Their magnetic, electrical, structural and resonance parameters are given in a wide range of temperatures and an external magnetic field. A model calculation of the electronic spectrum of the solid solution Eu–Fe–O, responsible for the manifestation of the outstanding properties of the composite, is performed. The possibility of creating semiconductor spin electronics devices capable of operating at room temperature is shown.


2010 ◽  
Vol 57 (6(1)) ◽  
pp. 1914-1918 ◽  
Author(s):  
Tae Kwon Song ◽  
Daesu Lee ◽  
Sang Mo Yang ◽  
Younghun Jo

2020 ◽  
Vol 8 (2) ◽  
pp. 536-542 ◽  
Author(s):  
Yuanqi Huang ◽  
Ang Gao ◽  
Daoyou Guo ◽  
Xia Lu ◽  
Xiao Zhang ◽  
...  

A thermostable Fe-doped γ-Ga2O3 thin film with a high room temperature saturation magnetic moment of 5.73 μB/Fe has been obtained for the first time.


1986 ◽  
Vol 90 ◽  
Author(s):  
S. M. Bedair ◽  
T. P. Humphreys ◽  
P. K. Chaing ◽  
T. Katsuyama

ABSTRACTInSb1−x Bix (0.01 < × < 0.14) and InAsSbBi quaternary alloys are potentially attractive materials for the development of semiconductor infrared detectors covering the 8–14 μm range [1,2,3].We report for the first time, MOCVD growth of InSo1−x Bix (0.01 < × < 0.14) and InAs1−x−y Sbx Biy with 0.5 < × < 0.7 and 0.01 < y < 0.04 on both GaAs and InSb substrates using AsH3, TMSb, TEI and TMBi. Electrical measurements of the undoped InSo0.99 Bi0.01 shows a background carrier concentration of approximately 1016/cm3 and a room temperature mobility of 20,215 cm2/V.sec. To-date, these are the best reported electrical measurements for this ternary alloy.The formation of a secondary Bi phase and single crystal growth of metallic bismuth-antimony at the surface of InSo1−x Bix which results in deterioration of morphology with increasing values of x is also investigated. A wide range of analytic techniques, including SEM, EDX, electron microprobe and AES have been employed in our surface analysis.


2003 ◽  
Vol 763 ◽  
Author(s):  
D. Guimard ◽  
N. Bodereau ◽  
J. Kurdi ◽  
J.F. Guillemoles ◽  
D. Lincot ◽  
...  

AbstractCuInSe2 and Cu(In, Ga)Se2 precursor layers have been prepared by electrodeposition, with morphologies suitable for device completion. These precursor films were transformed into photovoltaic quality films after thermal annealing without any post-additional vacuum deposition process. Depending on the preparation parameters annealed films with different band gaps between 1eV and 1.5 eV have been prepared. The dependence of resulting solar cell parameters has been investigated. The best efficiency achieved is about 10,2 % for a band gap of 1.45 eV. This device presents an open circuit voltage value of 740 mV, in agreement with the higher band gap value. Device characterisations (current-voltage, capacitance-voltage and spectral response analysis) have been performed. Admittance spectroscopy at room temperature indicates the presence of two acceptor traps at 0.3 and 0.43 eV from the valance band with density of the order of 2. 1017 cm-3 eV-1.


2011 ◽  
Vol 25 (04) ◽  
pp. 531-542
Author(s):  
CABİR TEMİRCİ ◽  
BAHRI BATI

We have fabricated the Sn/p-Si Schottky barrier diodes with the interfacial layer metal–insulator–semiconductor (D-MIS) and the surface passivation metal–semiconductor MS (D-MS) by the anodization or chemical treatment method. The current–voltage (I–V) and capacitance–voltage (C–V) characteristics of the devices were measured at room temperature. We obtained that the excess capacitance (C0) value of the MIS Sn/p-Si diode with the anodic oxide layer of 16.88 pF and 0.12 pF for the MS Sn/p-Si ideal diode with the surface passivation by the anodization or chemical treatment method from reverse bias C–V characteristics. Thus, we have succeeded to diminish the excess capacitance value to the limit of 0.12 pF for the MS Sn/p-Si diode by using the anodization or chemical treatment method.


Sign in / Sign up

Export Citation Format

Share Document