Efficient Cu(In, Ga)Se2 Based Solar Cells Prepared by Electrodeposition

2003 ◽  
Vol 763 ◽  
Author(s):  
D. Guimard ◽  
N. Bodereau ◽  
J. Kurdi ◽  
J.F. Guillemoles ◽  
D. Lincot ◽  
...  

AbstractCuInSe2 and Cu(In, Ga)Se2 precursor layers have been prepared by electrodeposition, with morphologies suitable for device completion. These precursor films were transformed into photovoltaic quality films after thermal annealing without any post-additional vacuum deposition process. Depending on the preparation parameters annealed films with different band gaps between 1eV and 1.5 eV have been prepared. The dependence of resulting solar cell parameters has been investigated. The best efficiency achieved is about 10,2 % for a band gap of 1.45 eV. This device presents an open circuit voltage value of 740 mV, in agreement with the higher band gap value. Device characterisations (current-voltage, capacitance-voltage and spectral response analysis) have been performed. Admittance spectroscopy at room temperature indicates the presence of two acceptor traps at 0.3 and 0.43 eV from the valance band with density of the order of 2. 1017 cm-3 eV-1.

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2303
Author(s):  
Giovanni Drera ◽  
Sonia Freddi ◽  
Tiziano Freddi ◽  
Andrea De Poli ◽  
Stefania Pagliara ◽  
...  

Photovoltaic (PV) cells based on single-walled carbon nanotube (SWCNT)/silicon (Si) and multiwalled carbon nanotube (MWCNT)/Si junctions were tested under exposure to NH3 in the 0–21 ppm concentration range. The PV cell parameters remarkably changed upon NH3 exposure, suggesting that these junctions, while being operated as PV cells, can react to changes in the environment, thereby acting as NH3 gas sensors. Indeed, by choosing the open-circuit voltage, VOC, parameter as read-out, it was found that these cells behaved as gas sensors, operating at room temperature with a response higher than chemiresistors developed on the same layers. The sensitivity was further increased when the whole current–voltage (I–V) curve was collected and the maximum power values were tracked upon NH3 exposure.


2013 ◽  
Vol 1551 ◽  
pp. 143-148
Author(s):  
R. Vasan ◽  
Y. F. M. Makableh ◽  
J. C. Sarker ◽  
M. O. Manasreh

ABSTRACTSolar cells based on InAs quantum dots embedded in InxGa1-xAs quantum wells grown on n-type GaAs substrate were fabricated and tested. Solar cells with In mole fraction (x) in the range of 0-40% were investigated. The performance of the solar cells was evaluated using current-voltage characteristics, spectral response, and quantum efficiency measurements. The spectral response and quantum efficiency spectra possess several peaks along the lower energy side of the spectra, which are attributed to the interband transitions in the structure. These peaks are red shifted as x is increased above 0 %. The device power conversion efficiency was extracted from the current-voltage characteristics using an AM 1.5 solar simulator. The short circuit current density increased as the x is increased above 0 %. But the overall power conversion efficiency decreased due to decrease in the open circuit voltage. The decrease in open circuit voltage is due strain induced dislocations caused by lattice mismatch.


2005 ◽  
Vol 862 ◽  
Author(s):  
Koeng Su Lim ◽  
Joong Hwan Kwak ◽  
Seong Won Kwon ◽  
Seung Yeop Myong

AbstractWe have developed highly stabilized (p-i-n)-type protocrystalline silicon (pc-Si:H) multilayer solar cells. However, the source of the superior light-induced stability of the pc-Si:H multilayer absorbers compared to conventional amorphous silicon (a-Si:H) absorbers remains unclear. Photoluminescence (PL) and Fourier transform infrared (FTIR) spectroscopy measured at room temperature produce strong evidence that nano-sized silicon grains embedded in regularly arranged highly H2-diluted sublayers suppress the photocreation of dangling bonds. To achieve a high conversion efficiency, we applied a double-layer p-type amorphous siliconcarbon alloy (p-a-Si1-xCx:H) structure to the pc-Si:H multilayer solar cells. The less pronounced initial short wavelength quantum efficiency variation as a function of bias voltage, and the wide overlap of dark current - voltage (JD-V) and short-circuit current - open-circuit voltage (Jsc-Voc) characteristics prove that the double p-a-Si1-xCx:H layer structure successfully reduces recombination at the p/i interface. Thus, we achieved a highly stabilized efficiency of 9.0 % without any back reflector.


2014 ◽  
Vol 1666 ◽  
Author(s):  
Y. Vygranenko ◽  
M. Fernandes ◽  
M. Vieira ◽  
A. Sazonov

ABSTRACTThis work reports a carbon-free, blue-enhanced a-Si:H n-i-p photodiode with an optimized protocrystalline p-layer. Although the used deposition conditions for the p-layer correspond to the microcrystalline regime, thin layers are mostly protocrystalline due to the amorphous underlying undoped layer. This conclusion is supported by Raman spectroscopy measurements. We have also found that the optical band gap of the p-layer can be varied by adjusting the rf power. By widening the band gap and tuning the impurity concentration in the p-layer, absorption and recombination losses at the p-i interface were reduced. The current-voltage, capacitance-voltage, and spectral-response characteristics of fabricated photodiodes are correlated with the doping level, optical band gap, and deposition conditions for p-layers. The optimized device exhibits a leakage current of about ∼80 pA/cm2 at 5 V reverse bias. The external quantum efficiency reaches a peak value of 92% at a wavelength of 510 nm, and, at shorter wavelengths, decreases down to 66%@400nm.


2002 ◽  
Vol 719 ◽  
Author(s):  
Galina Khlyap

AbstractRoom-temperature electric investigations carried out in CO2-laser irradiated ZnCdHgTe epifilms revealed current-voltage and capacitance-voltage dependencies typical for the metal-semiconductor barrier structure. The epilayer surface studies had demonstrated that the cell-like relief has replaced the initial tessellated structure observed on the as-grown samples. The detailed numerical analysis of the experimental measurements and morphological investigations of the film surface showed that the boundaries of the cells formed under the laser irradiation are appeared as the regions of accumulation of derived charged defects of different type of conductivity supplying free charge carriers under the applied electric field.


2019 ◽  
Vol 87 (3) ◽  
pp. 30101 ◽  
Author(s):  
Abdel-baset H. Mekky

Semiconductor materials cadmium sulfide (CdS) and cadmium telluride (CdTe) are employed in the fabrication of thin film solar cells of relatively excessive power conversion efficiency and low producing price. Simulations of thin film CdS/CdTe solar cell were carried out using SCAPS-1D. The influence of temperature field on the variation of CdTe solar cell parameters such as current–voltage, capacitance–voltage characteristics and the external quantum efficiency was investigated theoretically. For use temperatures, one obtains the external quantum efficiency has the same profiles. However, the effect of the temperature on the Mott-Schottky curves is slightly noted by variations on the characteristics. This conclusion can be used by solar cell manufacturers to improve the solar cell parameters with the biggest possible gain in device performance.


2021 ◽  
Author(s):  
EMINE ALDIRMAZ ◽  
M. Güler ◽  
E. Güler

Abstract In this study, the Cu-23.37%Zn-13.73%Al-2.92%Mn (at.%) alloy was used. Phase identification was performed with the Scanning electron microscope (SEM), and energy-dispersive X-ray (EDX). We observed in the austenite phase in Cu-23.37%Zn-13.73%Al-2.92%Mn (at.%) alloy. To produce a new Schottky diode, CuZnAlMn alloy was exploited as a Schottky contact on p-type semiconductor silicon substrate. To calculate the characteristics of the produced diode, current-voltage (I-V), capacitance-voltage (C-V) and conductance-voltage (G-V) analyzes were taken at room temperature (300 K), in the dark and under various lights. Using electrical measurements, the diode's ideality factor (n), barrier height (Φb), and other diode parameters were calculated. Besides, the conductance / capacitance-voltage (G/C-V) characteristics of the diode were studied and in a wide frequency interval at room temperature. Also, the capacitance and conductance values strongly ​​ rely on the frequency. From the present experimental results, the obtained diode can be used for optoelectronic devices.


2005 ◽  
Vol 891 ◽  
Author(s):  
Koichiro Ueno ◽  
Edson Gomes Camargo ◽  
Yoshifumi Kawakami ◽  
Yoshitaka Moriyasu ◽  
Kazuhiro Nagase ◽  
...  

ABSTRACTA microchip-sized InSb photodiode based infrared sensor (InSb PDS) that operates at room temperature was developed. The InSb PDS consists of 700 photodiodes connected in series and consumes no power, because it works in photovoltaic mode to output an open-circuit voltage. The InSb PDS has a typical responsivity of 1,900 V/W and an output noise of 0.15 μV/Hz1/2. A detectivity of 2.8×108 cmHz1/2/W was obtained at 300 K. The InSb PDS has performance high enough for applications such as mobile electronic equipment, personal computers, and consumer electronics


2007 ◽  
Vol 17 (01) ◽  
pp. 165-172 ◽  
Author(s):  
ADRIENNE D. STIFF-ROBERTS

Quantum dot infrared photodetectors (QDIPs) using quantum dots (QDs) grown by strained-layer epitaxy have demonstrated low dark current, multi-spectral response, high operating temperature, and infrared (IR) imaging. However, achieving near room-temperature, multi-spectral operation is a challenge due to randomness in QD properties. The ability to control dopant incorporation is important since charge carrier occupation influences dark current and IR spectral response. In this work, dopant incorporation is investigated in two classes of QDs; epitaxial InAs/GaAs QDs and CdSe colloidal QDs (CQDs) embedded in MEH-PPV conducting polymers. The long-term goal of this work is to combine these hybrid nanomaterials in a single device heterostructure to enable multi-spectral IR photodetection. Two important results towards this goal are discussed. First, by temperature-dependent dark current-voltage and polarization-dependent Fourier transform IR spectroscopy measurements in InAs/GaAs QDIPs featuring different doping schemes, we have provided experimental evidence for the important contribution of thermally-activated, defect-assisted, sequential resonant tunneling. Second, the enhanced quantum confinement and electron localization in the conduction band of CdSe / MEH-PPV nanocomposites enable intraband transitions in the mid-IR at room temperature. Further, by controlling the semiconductor substrate material, doping type, and doping level on which these nanocomposites are deposited, the intraband IR response can be tuned.


2021 ◽  
Vol 20 (3) ◽  
pp. 32-36
Author(s):  
Ahmad Bukhairi Md Rashid ◽  
Mastura Shafinaz Zainal Abidin ◽  
Shaharin Fadzli Abd Rahman ◽  
Amirjan Nawabjan

This paper reported on the electrochemical deposition of zinc oxide (ZnO) on p-silicon (p-Si) (100) substrate in the mixture of 0.1 M of zinc chloride (ZnCl2) and potassium chloride (KCl) electrolyte at a volume ratio of 1:1, 3:1 and 5:1 namely Sample A, B and C. The deposition process was done in room temperature with a current density of 10 mA/cm2 for 30 minutes. Prior to the experiment, all samples were treated by RCA cleaning steps. All samples were characterized using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The results show that all samples have the same morphology of a flake-like structure with different Zn:O ratio that were 2.81, 2.35 and 2.49 for samples A, B and C. The current-voltage (I-V) characteristic graph was obtained by dark current measurement using Keithley SMU 2400 and the threshold voltage (Vth) values were determined at 2.21 V, 0.85 V and 1.22 V for sample A, B and C respectively which correspond with the Zn:O ratio where the highest value of Zn:O ratio can be found in sample A and the lowest in sample B. Based on these results, it shows that electrochemical deposition technique is capable of being used to deposit the flake-like structure ZnO on semiconductor material to form the p-n junction which behaves like a diode. The value of Vth seems to be depended on the ratio between Zn and O. Higher ratio of Zn and O will cause the higher value of intrinsic carrier concentration and built in potential which will increase the Vth value.


Sign in / Sign up

Export Citation Format

Share Document