The p-channel a-Si:H Thin Film Transistor with Plasma Etched Copper Electrodes

2004 ◽  
Vol 808 ◽  
Author(s):  
Helinda Nominanda ◽  
Guojun Liu ◽  
Hyun Ho Lee ◽  
Yue Kuo

ABSTRACTP-channel thin film transistors (TFTs) with a copper (Cu) gate, source, and drain electrodes, prepared by a novel plasma etching process, have been fabricated and studied. The p-channel TFT characteristics are similar to those of the p-channel TFT with Mo electrodes. The influence of the channel length on the TFT characteristics, such as mobility, threshold voltage, and on-off current ratio, was examined. In spite of its low mobility, good device characteristics, such as ohmic contacts, were obtained. Most of the TFT characteristics, except the threshold voltage, were not affected by an extended high-temperature annealing step. The increase of the threshold voltage was probably due to the lack of a diffusion barrier between the gate Cu and the gate SiNx layer.

2006 ◽  
Vol 156 (7-8) ◽  
pp. 633-636 ◽  
Author(s):  
Jae Bon Koo ◽  
Jung Hun Lee ◽  
Chan Hoe Ku ◽  
Sang Chul Lim ◽  
Seong Hyun Kim ◽  
...  

2011 ◽  
Vol 99 (6) ◽  
pp. 062108 ◽  
Author(s):  
Bosul Kim ◽  
Eugene Chong ◽  
Do Hyung Kim ◽  
Yong Woo Jeon ◽  
Dae Hwan Kim ◽  
...  

Author(s):  
Bui Nguyen Quoc Trinh

Abstract: A novel concept of NAND memory array has been proposed by using only ferroelectric-gate thin film transistors (FGTs), whose structure is constructed from a sol-gel ITO channel and a sol-gel stacked ferroelectric between Bi3.25La0.75Ti3O12 and PbZr0.52TiO0.48O3 (BLT/PZT) gate insulator. Interestingly, ferroelectric cells with a wide memory window of 3 V and a large on/off current ratio of 6 orders, have been successfully integrated in a NAND memory circuit. To protect data writing or reading from disturbance, ferroelectric transistor cells are directly used, instead of paraelectric transistor cells as usual. As a result, we have verified disturbance-free operation for data reading and writing, with a small loss of the memory state and a low power consumption, in principle. Keywords: ITO, PZT, NAND, FeRAM, ferroelectric.


RSC Advances ◽  
2019 ◽  
Vol 9 (36) ◽  
pp. 20865-20870 ◽  
Author(s):  
Dong-Gyu Kim ◽  
Jong-Un Kim ◽  
Jun-Sun Lee ◽  
Kwon-Shik Park ◽  
Youn-Gyoung Chang ◽  
...  

We studied the effect of X-ray irradiation on the negative threshold voltage shift of bottom-gate a-IGZO TFT. Based on spectroscopic analyses, we found that this behavior was caused by hydrogen incorporation and oxygen vacancy ionization.


Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 137 ◽  
Author(s):  
Seung-Hun Lee ◽  
Kihwan Kwon ◽  
Kwanoh Kim ◽  
Jae Sung Yoon ◽  
Doo-Sun Choi ◽  
...  

The properties of Al-doped SnOx films deposited via reactive co-sputtering were examined in terms of their potential applications for the fabrication of transparent and flexible electronic devices. Al 2.2-atom %-doped SnOx thin-film transistors (TFTs) exhibit improved semiconductor characteristics compared to non-doped films, with a lower sub-threshold swing of ~0.68 Vdec−1, increased on/off current ratio of ~8 × 107, threshold voltage (Vth) near 0 V, and markedly reduced (by 81%) Vth instability in air, attributable to the decrease in oxygen vacancy defects induced by the strong oxidizing potential of Al. Al-doped SnOx films maintain amorphous crystallinity, an optical transmittance of ~97%, and an adhesive strength (to a plastic substrate) of over 0.7 kgf/mm; such films are thus promising semiconductor candidates for fabrication of transparent flexible TFTs.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Chao-Te Liu ◽  
Wen-Hsi Lee ◽  
Jui-Feng Su

The nanocomposite gate insulating film of a pentacene-based thin film transistor was deposited by inkjet printing. In this study, utilizing the pearl miller to crumble the agglomerations and the dispersant to well stabilize the dispersion of nano-TiO2particles in the polymer matrix of the ink increases the dose concentration for pico-jetting, which could be as the gate dielectric film made by inkjet printing without the photography process. Finally, we realized top contact pentacene-TFTs and successfully accomplished the purpose of directly patternability and increase the performance of the device based on the nanocomposite by inkjet printing. These devices exhibited p-channel TFT characteristics with a high field-effect mobility (a saturation mobility of ̃0.58 cm2 V−1 s−1), a large current ratio (>103) and a low operation voltage (<6 V). Furthermore, we accorded the deposited mechanisms which caused the interface difference between of inkjet printing and spin coating. And we used XRD, SEM, Raman spectroscopy to help us analyze the transfer characteristics of pentacene films and the performance of OTFTs.


1997 ◽  
Vol 488 ◽  
Author(s):  
J. Collet ◽  
O. Tharaud ◽  
C. Legrand ◽  
A. Chapoton ◽  
D. Vuillaume

AbstractHigh performance thin-film transistors (TFT) made of conducting oligomers are obtained when the organic films are well ordered at a molecular level. Highly ordered films are obtained provided that oligomers have a sufficient mobility on the substrate surface during film formation. One possible way to fulfill such a condition is to evaporate oligomers on heated substrates [1,2]. In this work, we suggest that a high surface mobility is obtained by a chemical functionalization of the silicon dioxide surface, and the corresponding improvements of the TFT performances are evidenced. A self-assembled monolayer of octadecyltrichlorosilane (OTS) was deposited on the SiO2 by chemisorption from solution before the evaporation of sexithiophene film. Room temperature current-voltage measurements indicate that the presence of the OTS monolayer improves TFT performances : threshold voltage is decreased, subthreshold slope is decreased, a high current ratio Ion/Ioff is obtained for a reduced gate voltage excursion, the fieldeffect mobility is slightly increased. We have also fabricated and characterized a nanometer scale organic FET (gate length = 50 nm) made of 6T films and only with a self-assembled monolayer as the insulating film between the degenerated silicon substrate (gate) and the conducting channel (no thick SiO2, we call it « oxide-free » organic FET). Performances of this nanometer size organic FETs are the following : subthreshold slope of 0.35V/dec, threshold voltage of −1.3V, effective mobility of 2×10−4 cm2/V.s.


Sign in / Sign up

Export Citation Format

Share Document