Silver Metallization with Reactively Sputtered TiN Diffusion Barrier Films

2004 ◽  
Vol 812 ◽  
Author(s):  
L. Gao ◽  
J. Gstöttner ◽  
R. Emling ◽  
Ch. Linsmeier ◽  
M. Balden ◽  
...  

AbstractThe physical and electrical properties as well as thermal stability of reactively sputtered titanium nitride (TiN) film serving as a diffusion barrier was studied for silver (Ag) metallization. The thermal stability of Ag/TiN metallizations on Si with 12-nm-thick TiN barriers, as-deposited and after annealing at 300-650°C in N2/H2 for 30 min, was investigated with sheet resistance measurement, X-ray diffraction, focused ion beam-scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. According to electrical measurement no change of sheet resistance was found after annealing at 600°C, but an abrupt rise appeared at 650°C annealing. There are two causes by which the Ag/TiN/Si structure became degraded. One is agglomeration of the silver layer, and the other is oxidation and diffusion which are also associated problems during thermal annealing.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Tae Hyeong Kim ◽  
Hyeji Kim ◽  
Hyo Jun Jang ◽  
Nara Lee ◽  
Kwang Hyun Nam ◽  
...  

AbstractIn the study reported herein, silver-coated copper (Ag/Cu) powder was modified with alkanethiols featuring alkyl chains of different lengths, namely butyl, octyl, and dodecyl, to improve its thermal stability. The modification of the Ag/Cu powders with adsorbed alkanethiols was confirmed by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Each powder was combined with an epoxy resin to prepare an electrically conductive film. The results confirmed that the thermal stability of the films containing alkanethiol-modified Ag/Cu powders is superior to that of the film containing untreated Ag/Cu powder. The longer the alkyl group in the alkanethiol-modified Ag/Cu powder, the higher the initial resistance of the corresponding electrically conductive film and the lower the increase in resistance induced by heat treatment.


1998 ◽  
Vol 514 ◽  
Author(s):  
M. F. Wu ◽  
A. Vantomne ◽  
S. Hogg ◽  
H. Pattyn ◽  
G. Langouche ◽  
...  

ABSTRACTThe Nd-disilicide, which exists only in a tetragonal or an orthorhombic structure, cannot be grown epitaxially on a Si(111) substrate. However, by adding Y and using channeled ion beam synthesis, hexagonal Nd0.32Y0.68Si1.7 epilayers with lattice constant of aepi = 0.3915 nm and cepi = 0.4152 nm and with good crystalline quality (χmin of Nd and Y is 3.5% and 4.3 % respectively) are formed in a Si(111) substrate. This shows that the addition of Y to the Nd-Si system forces the latter into a hexagonal structure. The epilayer is stable up to 950 °C; annealing at 1000 °C results in partial transformation into other phases. The formation, the structure and the thermal stability of this ternary silicide have been studied using Rutherford backscattering/channeling, x-ray diffraction and transmission electron microscopy.


CORROSION ◽  
10.5006/3881 ◽  
2021 ◽  
Author(s):  
Zachary Karmiol ◽  
Dev Chidambaram

This work investigates the oxidation of a nickel based superalloy, namely Alloy X, in water at elevated temperatures: subcritical water at 261°C and 27 MPa, the transition between subcritical and supercritical water at 374°C and 27 MPa, and supercritical water at 380°C and 27 MPa for 100 hours. The morphology of the sample surfaces were studied using scanning electron microscopy coupled with focused ion beam milling, and the surface chemistry was investigated using X-ray diffraction, Raman spectroscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy before and after exposure studies. Surfaces of all samples were identified to comprise of a ferrite spinel containing aluminum.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 210
Author(s):  
Xiangdong Yang ◽  
Haitao Wang ◽  
Peng Wang ◽  
Xuxin Yang ◽  
Hongying Mao

Using in situ ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS) measurements, the thermal behavior of octadecyltrichlorosilane (OTS) and 1H, 1H, 2H, and 2H-perfluorooctyltriethoxysilane (PTES) monolayers on SiO2 substrates has been investigated. OTS is thermally stable up to 573 K with vacuum annealing, whereas PTES starts decomposing at a moderate temperature between 373 K and 423 K. Vacuum annealing results in the decomposition of CF3 and CF2 species rather than desorption of the entire PTES molecule. In addition, our UPS results reveal that the work function (WF)of OTS remains the same after annealing; however WF of PTES decreases from ~5.62 eV to ~5.16 eV after annealing at 573 K.


2003 ◽  
Vol 777 ◽  
Author(s):  
B.J. Inkson ◽  
G. Dehm

AbstractPt nanowires have been produced by FIB deposition of Pt thin films in a commercial Ga+ focused ion beam (FIB) system, followed by cross-sectional sputtering to form electron transparent Pt nanowires. The thermal stability of amorphous FIB manufactured Pt wires has been investigated by in-situ thermal cycling in a TEM. The Pt wires are stable up to 580-650°C where partial crystallization is observed in vacuum. Facetted nanoparticles grow on the wire surface, growing into free space by surface diffusion and minimising contact area with the underlying wire. The particles are fcc Pt with some dissolved Ga. Continued heating results in particle spheroidization, coalescence and growth, retaining the fcc structure.


1999 ◽  
Vol 5 (S2) ◽  
pp. 10-11
Author(s):  
J.R. Phillips ◽  
D.P. Griffis ◽  
P.E. Russell

The Analytical Instrumentation Facility (AIF) is a laboratory composed of scientists and engineers specializing in the development and application of advanced techniques for materials characterization (http://spm.aif.ncsu.edu/aif/index.html)http://www.nice.org.uk/page.aspx?o=43210. AIF facilities include an extensive collection of analytical instrumentation utilized in teaching, research, and in support of academic and industrial programs. General forms of analysis include: electron, ion, and photon microscopies, surface science and analysis, and scanned probe microscopies. An abbreviated listing of AIF capabilities follows: metallography/sample preparation, optical microscopy, X-ray Diffraction (XRD), X-ray Fluorescence (XRF), Secondary Ion Mass Spectroscopy (SIMS), Secondary Electron Microscopy (SEM), Scanned Probe Microscopy (SPM), Micro-Raman Spectroscopy, Focused Ion Beam Micro-machining (FIBM), Auger Electron Spectroscopy (AES), and X-Ray Photoelectron Spectroscopy (XPS or ESCA).AIF is a resource utilized not only by those within NC State requiring analytical services, but also by a large number of North Carolina non-profit and industrial organizations as well as the Materials Community at large.


2002 ◽  
Vol 744 ◽  
Author(s):  
S. O. Kucheyev ◽  
C. Jagadish ◽  
J. S. Williams ◽  
P. N. K. Deenapanray ◽  
Mitsuaki Yano ◽  
...  

ABSTRACTThe formation of highly resistive films of single-crystal ZnO as a result of irradiation with MeV Li, O, and Si ions is demonstrated. Results show that the ion doses necessary for electrical isolation close-to-inversely depend on the number of ion-beam-generated atomic displacements. Results show that an increase in the dose of 2 MeV O ions (up to ∼ 2 orders of magnitude above the threshold isolation dose) and irradiation temperature (up to 350 °C) has a relatively minor effect on the thermal stability of electrical isolation, which is limited to temperatures of ∼ 300 — 400 °C. For the case of multiple-energy implantation with keV Cr, Fe, or Ni ions, the evolution of sheet resistance with annealing temperature is consistent with defect-induced isolation, with a relatively minor effect of Cr, Fe, or Ni impurities on the thermal stability of isolation. Based on these results, the mechanism for electrical isolation in ZnO by ion bombardment is discussed.


2007 ◽  
Vol 539-543 ◽  
pp. 3497-3502 ◽  
Author(s):  
J.P. Chu ◽  
C.H. Lin

Sputtered Cu films containing various insoluble substances, such as Cu(W2.3), Cu(Mo2.0), Cu(Nb0.4), Cu(C2.1) and Cu(W0.4C0.7), are examined in this study. These films are prepared by magnetron sputtering, followed by thermal annealing. The crystal structure, microstructure, SIMS depth-profiles, leakage current, and resistivity of the films are investigated. Good thermal stability of these Cu films is confirmed with focused ion beam, X-ray diffractometry, SIMS, and electrical property measurements. After annealing at 400°C, obvious drops in resistivity, to ~3.8 μ-cm, are seen for Cu(W) film, which is lower than the other films. An evaluation of the leakage current characteristic from the SiO2/Si metal-oxide-semiconductor (MOS) structure also demonstrates that Cu with dilute tungsten is more stable than the other films studied. These results further indicate that the Cu(W) film has more thermal stability than the Cu(Mo), Cu(Nb), Cu(C), Cu(WC) and pure Cu films. Therefore, the film is suitable for the future barrierless metallization.


2001 ◽  
Vol 78 (2) ◽  
pp. 234-236 ◽  
Author(s):  
David J. Keavney ◽  
Sungkyun Park ◽  
Charles M. Falco ◽  
J. M. Slaughter

Sign in / Sign up

Export Citation Format

Share Document