Growth and Metrology of Silicon Oxides on Silicon Carbide

2004 ◽  
Vol 815 ◽  
Author(s):  
Andrew M. Hoff

AbstractThermal oxidation of SiC by the afterglow method has opened new pathways of opportunity to address both thin film growth and defects that hinder electronic device development with this important semiconductor material. Oxide growth, with rates up to 700Å per hour, on SiC has been demonstrated using this technique over a temperature range from 400°C to 1100°C at 1 Torr total pressure. Electrical and physical properties of oxide films grown by conventional means or by the afterglow method were obtained with a novel, non-contact charge-voltage (Q-V) metrology approach. This instrument employs a combination of incremental contact potential difference values obtained in response to applied corona charge generated from air. The slope of the Q-V characteristic within a bias range corresponding to accumulation of the semiconductor provides an effective dielectric permittivity value for the grown film. Effective permittivity values for afterglow oxides grown on SiC approach that of SiO2 grown on silicon substrates whereas the values for oxides grown on SiC in an atmospheric steam oxidation process are always depressed relative to SiO2 on silicon, indicating that the latter process always produces low-k oxides. A mechanistic discussion regarding these observed differences between the two oxidation methods is presented along with suggestions for an integrated process and metrology approach to reduce defects in oxide films on SiC.

1973 ◽  
Vol 23 (12) ◽  
pp. 528-534
Author(s):  
Tatsuya IMOTO ◽  
Futoshi KANEMATSU ◽  
Joichi SAITO ◽  
Takao MURAKAWA

2020 ◽  
Vol 90 (6) ◽  
pp. 982
Author(s):  
Д.А. Бокизода ◽  
А.Ф. Зацепин ◽  
Е.А. Бунтов ◽  
А.И. Слесарев

The energy characteristics of carbyne-containing films on copper and silicon substrates have been studied using the methods of optically stimulated electron emission (OSEE) and ambient pressure photoemission spectroscopy (APS). The average contact potential difference and the work function were determined, and the positions of the Fermi level for carbonaceous films of various thicknesses were calculated. It was found that the electron work function and the position of the Fermi level of the studied film samples are independent of the film thickness and the type of substrate. The information capabilities of the OSEE and APS methods for assessing the quality of carbon coatings on various substrates are shown.


2006 ◽  
Vol 527-529 ◽  
pp. 1035-1038 ◽  
Author(s):  
A.M. Hoff ◽  
E. Oborina

Non-contact corona-voltage metrology is utilized to characterize as-grown thermal oxide films on 4H SiC substrates. Contact potential difference mapping is coupled with incremental application of corona charge to provide whole-wafer images of process related effects and multiplepoint capacitance-voltage characteristics respectively. Correspondence between wafer VCPD images and process details is suggested along with examples of fast electrical dielectric thickness determination and non-contact C-V characteristic acquisition.


2018 ◽  
Author(s):  
Weikun Zhu ◽  
Erfan Mohammadi ◽  
Ying Diao

Morphology modulation offers significant control over organic electronic device performance. However, morphology quantification has been rarely carried out via image analysis. In this work, we designed a MATLAB program to evaluate two key parameters describing morphology of small molecule semiconductor thin films: fractal dimension and film coverage. We then employ this program in a case study of meniscus-guided coating of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C<sub>8</sub>-BTBT) under various conditions to analyze a diverse and complex morphology set. The evolution of morphology in terms of fractal dimension and film coverage was studied as a function of coating speed. We discovered that combined fractal dimension and film coverage can quantitatively capture the key characteristics of C<sub>8</sub>-BTBT thin film morphology; change of these two parameters further inform morphology transition. Furthermore, fractal dimension could potentially shed light on thin film growth mechanisms.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1803
Author(s):  
Zhen Zheng ◽  
Junyang An ◽  
Ruiling Gong ◽  
Yuheng Zeng ◽  
Jichun Ye ◽  
...  

In this work, we report the same trends for the contact potential difference measured by Kelvin probe force microscopy and the effective carrier lifetime on crystalline silicon (c-Si) wafers passivated by AlOx layers of different thicknesses and submitted to annealing under various conditions. The changes in contact potential difference values and in the effective carrier lifetimes of the wafers are discussed in view of structural changes of the c-Si/SiO2/AlOx interface thanks to high resolution transmission electron microscopy. Indeed, we observed the presence of a crystalline silicon oxide interfacial layer in as-deposited (200 °C) AlOx, and a phase transformation from crystalline to amorphous silicon oxide when they were annealed in vacuum at 300 °C.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 505
Author(s):  
Krzysztof Aniołek ◽  
Bożena Łosiewicz ◽  
Julian Kubisztal ◽  
Patrycja Osak ◽  
Agnieszka Stróż ◽  
...  

Titanium and its alloys are among the most promising biomaterials for medical applications. In this work, the isothermal oxidation of Ti-6Al-7Nb biomedical alloy towards improving its mechanical properties, corrosion resistance, and bioactivity has been developed. The oxide layers were formed at 600, 700, and 800 °C for 72 h. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), 3D profilometry, and microindentation test, were used to characterize microstructure, surface geometrical structure, and the hardness of the diphase (α + β) Ti-6Al-7Nb alloy after oxidation, respectively. In vitro corrosion resistance tests were carried out in a saline solution at 37 °C using the open-circuit potential method and potentiodynamic measurements. Electronic properties in the air were studied using the Scanning Kelvin Probe (SKP) technique. The bioactivity test was conducted by soaking the alkali- and heat-treated samples in simulated body fluid for 7 days. The presence of apatite was confirmed using SEM/EDS and Fourier Transform Infrared Spectroscopy (FTIR) studies. The thickness of oxide layers formed increased with the temperature growth from 0.25 to 5.48 µm. It was found that with increasing isothermal oxidation temperature, the surface roughness, hardness, corrosion resistance, and contact potential difference increased. The Ti-6Al-7Nb alloy after oxidation revealed the HAp-forming ability in a biological environment.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4169
Author(s):  
Gennady Gorokh ◽  
Natalia Bogomazova ◽  
Abdelhafed Taleb ◽  
Valery Zhylinski ◽  
Timur Galkovsky ◽  
...  

The process of layer-by-layer ionic deposition of tin-tungsten oxide films on smooth silicon substrates and nanoporous anodic alumina matrices has been studied. To achieve the film deposition, solutions containing cationic SnF2 or SnCl2 and anionic Na2WO4 or (NH4)2O·WO3 precursors have been used. The effect of the solution compositions on the films deposition rates, morphology, composition, and properties was investigated. Possible mechanisms of tin-tungsten oxide films deposition into the pores and on the surface of anodic alumina are discussed. The electro-physical and gas-sensitive properties of nanostructured SnxWyOz films have been investigated. The prepared nanocomposites exhibit stable semiconductor properties characterized by high resistance and low temperature coefficient of electrical resistance of about 1.6 × 10−3 K−1. The sensitivity of the SnxWyOz films to 2 and 10 ppm concentrations of ammonia at 523 K was 0.35 and 1.17, respectively. At concentrations of 1 and 2 ppm of nitrogen dioxide, the sensitivity was 0.48 and 1.4, respectively, at a temperature of 473 K. At the temperature of 573 K, the sensitivity of 1.3 was obtained for 100 ppm of ethanol. The prepared nanostructured tin-tungsten oxide films showed promising gas-sensitivity, which makes them a good candidate for the manufacturing of gas sensors with high sensitivity and low power consumption.


Sign in / Sign up

Export Citation Format

Share Document