Nucleation of (Mo) Precipitates on Dislocations During Annealing of a Mo-rich Mo5SiB2 Phase

2004 ◽  
Vol 842 ◽  
Author(s):  
Nobuaki Sekido ◽  
Ridwan Sakidja ◽  
John H. Perepezko

ABSTRACTUpon annealing an as-cast Mo-10Si-20B alloy at high temperatures, a Mo solid solution phase precipitates within a supersaturated Mo5SiB2 phase. The precipitation behavior of the Mo solid solution was investigated by means of transmission electron microscopy and X-ray diffractometry. It is found that the Mo5SiB2 phase in a Mo-10Si-20B alloy contains a significant amount of structural vacancies in the as-cast state. The excess vacancies are removed to form dislocations during annealing, which provides the heterogeneous nucleation sites for the (Mo) precipitates.

Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


2007 ◽  
Vol 561-565 ◽  
pp. 655-658 ◽  
Author(s):  
Qiang Zeng ◽  
Jennifer Luna ◽  
Y. Bayazitoglu ◽  
Kenneth Wilson ◽  
M. Ashraf Imam ◽  
...  

This study is considered as a method for producing multifunctional metal composite materials by using Single-walled Carbon Nanotubes (SWNTs). In this research, various metals (Ni, Cu, Ag ) were successfully deposited onto the surface of SWNTs. It has been found that homogenous dispersion and dense nucleation sites are the necessary conditions to form uniform coating on SWNTs. Functionalization has been applied to achieve considerable improvement in the dispersion of purified single-walled carbon nanotubes. A three-step electroless plating approach was used and the coating mechanism is described in the paper. The samples were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The application of coated SWNTs in Titanium will be discussed in this paper.


2013 ◽  
Vol 747-748 ◽  
pp. 765-771 ◽  
Author(s):  
Jian Sheng Yao ◽  
Ding Zhong Tang ◽  
Xiao Guang Liu ◽  
Cheng Bo Xiao ◽  
Xin Li ◽  
...  

The interfacial reactions between ceramic moulds and DZ417G and DZ125 superalloys were investigated. The microstructure and composition of the interface region were observed by optical microscope, X-ray diffraction and scanning electron microscope with energy dispersive spectroscopy. The results showed that (Al1-xCrx)2O3solid solution phase with pink color was formed from the dissolution of Cr2O3and Al2O3and vapour phase, which was transferred to the reaction surfaces. The reaction layer thicknesses of DZ417G and DZ125 alloys were about in the range of 40-50μm. The interface reaction product between DZ417G alloy and ceramic mould was TiO2and the product between DZ125 alloy and ceramic mould was HfO2.


2016 ◽  
Vol 672 ◽  
pp. 103-112 ◽  
Author(s):  
Elena Macías-Sánchez ◽  
Antonio G. Checa ◽  
Marc G. Willinger

The surface membrane is a lamellar structure exclusive of gastropods that is formed during the shell secretion. It protects the surface of the growing nacre and it is located between the mantle epithelium and the mineralization compartment. At the mantle side of the surface membrane numerous vesicles provide material, and at the nacre side, the interlamellar membranes detach from the whole structure. Components of nacre (glycoproteins, polysaccharides and calcium carbonate) cross the structure to reach the mineralization compartment, but the mechanism by which this occurs is still unknown. In this paper we have investigated the ultrastructure of the surface membrane and the associated vesicle layer by means of Transmission Electron Microscopy. Electron Energy Loss Spectroscopy and Energy-dispersive X-ray Spectroscopy were used for elemental analysis. The analyses revealed the concentration of calcium in the studied structures: vesicles, surface membrane, and interlamellar membranes. We discuss the possible linkage of calcium to the organic matrix.


2020 ◽  
Vol 98 (12) ◽  
pp. 771-778
Author(s):  
Xin Chang ◽  
Xiangyang Xu ◽  
Zhifeng Gao ◽  
Yingrui Tao ◽  
Yixuan Yin ◽  
...  

A nanocomposite, reduced graphene oxide (RGO) modified ZnCo2O4 (ZnCo2O4–RGO) was synthesized via one-step solvothermal method for activating persulfate (PS) to degrade bisphenol A (BPA). The morphology and structure of the nanocomposite were identified by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. RGO provides nucleation sites for ZnCo2O4 to grow and inhibits the agglomeration of the nanoparticles. The influence of different reaction conditions on the oxidation of BPA catalyzed by ZnCo2O4–RGO was investigated, including the content of RGO, the dosage of catalyst, the concentration of humic acid (HA), anions in the environment, the reaction temperature, and pH. BPA can be totally degraded within 20 min under optimized reaction conditions. The presence of HA, Cl−, and NO3− only has a slight effect on the oxidation of BPA, whereas the presence of either H2PO4− or HCO3− can greatly inhibit the reaction. ZnCo2O4–RGO shows good cycling stability and practical application potential. A reaction mechanism of the degradation of BPA was also explored.


1995 ◽  
Vol 32 (12) ◽  
pp. 2021-2026 ◽  
Author(s):  
S. Schultze-Lam ◽  
F. G. Ferris ◽  
K. O. Konhauser ◽  
R. G. Wiese

Transmission electron microscopy and energy-dispersive x-ray analysis revealed that filamentous phototrophic bacteria resembling Chloroflexus aurantiacus underwent rapid silicification in an Icelandic hot spring microbial mat. The mineralization associated with the cells occurred both extracellularly, within and on the external sheaths of the bacteria, and intracellularly, within the cytoplasm. The exceptional preservation of the bacterial sheaths is due to the presence of distinct mineral nucleation sites. This results in the production of silica casts of the bacteria, which bear a striking resemblance to microbial remains in ancient microfossil assemblages.


2009 ◽  
Vol 1228 ◽  
Author(s):  
Masataka Hakamada ◽  
Yasumasa Chino ◽  
Mamoru Mabuchi

AbstractMetallic nanoporous architecture can be spontaneously attained by dealloying of a binary alloy. The nanoporous architecture can be often fabricated in noble metals such as Au and Pt. In this study, nanoporous Ni, Ni-Cu are fabricated by dealloying rolled Ni-Mn and Cu-Ni-Mn alloys, respectively. Unlike conventional Raney nickel composed of brittle Ni-Al or Cu-Al intermetallic compounds, the initial alloys had good workability probably because of their fcc crystal structures. After the electrolysis of the alloys in (NH4)2SO4 aqueous solution, nanoporous architectures of Ni and Ni-Cu with pore and ligament sizes of 10–20 nm were confirmed by scanning electron microscopy and transmission electron microscopy. X-ray diffraction analyses suggested that Ni and Cu atoms form a homogeneous solid solution in the Ni-Cu nanoporous architecture. The ligament sizes of nanoporous Ni and Ni-Cu were smaller than that of nanoporous Cu, reflecting the difference between diffusivities of Ni and Cu at solid/electrolyte interface. Ni can reduce the pore and ligament sizes of resulting nanoporous architecture when added to initial Cu-Mn alloys.


2012 ◽  
Vol 1444 ◽  
Author(s):  
S.V. Stefanovsky ◽  
A.A. Shiryaev ◽  
I.E. Vlasova ◽  
V.O. Yapaskurt ◽  
J.C. Marra

ABSTRACTTwo LaBS glasses containing 9.5 wt.% (#1) and 5.0 wt.% PuO2 (#2) were prepared by melting in Pt ampoules at 1500 C and examined by scanning electron microscopy with energy dispersive X-ray spectroscopy. The bulk of sample #1, both as-prepared and stored for 3 yrs, was amorphous with homogeneous PuO2 distribution. Sample #2, especially after storage for 2-3 yrs, was partly devitrified primarily in the near-surface area. As followed from X-ray elemental maps, the vitreous phase was enriched with Al and Si whereas larger elongated and smaller dendrite crystals strongly enriched with rare earths (La, Nd, Gd) and Si and minor amounts of Hf may be attributed to britholite. A minor concentration of Pu was also observed in this phase. Moreover, relatively minor amounts of white regular crystals with high PuO2 and lower HfO2 contents were observed in the samples and are probably associated with PuO2 and a PuO2-HfO2 cubic solid solution phase. Nevertheless, even in devitrified areas of the samples, the majority of the Pu remained in the vitreous phase where it was homogeneously distributed.


Author(s):  
Z.T. Zhang ◽  
H.P. Nie ◽  
K. Yan

Sb distribution in the phases of SiO2 saturated Sb-Fe-O-SiO2-CaO system has been determined for the first time through high-temperature experiment and quenching techniques, followed by Electron probe X-ray microanalysis(EPMA) in air(Ptot= 1 atm, PO2= 0.21 atm). The phases were quantified in the temperature range of 900?C-1200?C and the effects of Fe/SiO2(mass fraction) and CaO/SiO2(mass fraction) on Sb2O3 content in the Sb-Fe-O-SiO2-CaO system were investigated at 1200?C. The results indicate that the Sb-containing phase primarily existed in the solid solution phase at 1200?C. With the increase of temperature from 1100?C to 1200?C, the Sb2O3 content in the solid solution phase increased drastically from 7.52 wt% to 17.36 wt%. Lowering the values of CaO/SiO2 and Fe/SiO2 in the smelting process effectively reduced Sb2O3 content in the slag. The verification experiment results suggest that the antimony content in slag was 0.57 wt%, the crude antimony yield rate was lower than 4%,and the crude antimony grade was beyond 94 wt%, which can achieve the reduction of antimony content in the slag.


Author(s):  
Xuehong Cui ◽  
Jinming Zhu ◽  
Ketong Luo ◽  
Jianlie Liang

Abstract Phase relationships in the Ce-Nd-B ternary system at 773 K were investigated by means of X-ray diffraction and scanning electron microscopy with energy dispersive X-ray spectroscopy techniques. Six borides, i. e. CeB4, CeB6, NdB4, NdB6, NdB66 and Nd2B5 are confirmed in this work. No ternary compound was observed. CeB4 and NdB4 were discovered to form the continuous solid solution phase (Ce,Nd)B4, CeB6 and NdB6 also form the solid solution phase (Ce,Nd)B6. The maximum solid solubility of Ce in (Ce,Nd)2B5 phase is 46.5 at.%. The isothermal section of the Ce-Nd-B ternary system at 773 K consists of 3 three-phase regions, 7 two-phase regions and 7 single- phase regions.


Sign in / Sign up

Export Citation Format

Share Document