Ge Growth on Nanostructured Silicon Surfaces

2005 ◽  
Vol 862 ◽  
Author(s):  
Ganesh Vanamu ◽  
Abhaya K. Datye ◽  
Saleem H. Zaidi

AbstractWe report highest quality Ge epilayers on nanoscale patterned Si structures. 100% Ge films of 10 μm are deposited using chemical vapor deposition. The quality of Ge layers was examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution x-ray diffraction (HRXRD) measurements. The defect density was evaluated using etch pit density measurements. We have obtained lowest dislocation density (5×105 cm-2) Ge films on the nanopatterned Si structures. The full width half maximum peaks of the reciprocal space maps of Ge epilayers on the nanopatterned Si showed 93 arc sec. We were able to get rid of the crosshatch pattern on the Ge surface grown on the nanopatterned Si. We also showed that there is a significant improvement of the quality of the Ge epilayers in the nanopatterned Si compared to an unpatterned Si. We observed nearly three-order magnitude decrease in the dislocation density in the patterned compared to the unpatterned structures. The Ge epilayer in the patterned Si has a dislocation density of 5×105 cm-2 as compared to 6×108 cm-2 for unpatterned Si.

2012 ◽  
Vol 490-495 ◽  
pp. 3211-3214 ◽  
Author(s):  
Lei Shan Chen ◽  
Cun Jing Wang

Synthesis reactions were carried out by chemical vapor deposition using iron catalyst supported on aluminum hydroxide at 400 °C and 420 °C, in the presence of argon as carrier gas and acetylene as carbon source. The aluminum hydroxide support was separated by refluxing the samples in 40% NaOH solution for 2 h and 36% HCl solution for 24 h, respectively. The samples were characterized by field-emission scanning electron microscopy, energy dispersive spectroscopy, high-resolution transmission electron microscopy and X-ray diffraction. The results show that carbon nanotubes were the main products at 420 °C, while large scale high purity nano onion-like fullerenes encapsulating Fe3C, with almost uniform sizes ranging from 10-50 nm, were obtained at the low temperature of 400 °C.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Chih-Yung Yang ◽  
Shu-Meng Yang ◽  
Yu-Yang Chen ◽  
Kuo-Chang Lu

Abstract In this study, self-catalyzed β-FeSi2 nanowires, having been wanted but seldom achieved in a furnace, were synthesized via chemical vapor deposition method where the fabrication of β-FeSi2 nanowires occurred on Si (100) substrates through the decomposition of the single-source precursor of anhydrous FeCl3 powders at 750–950 °C. We carefully varied temperatures, duration time, and the flow rates of carrier gases to control and investigate the growth of the nanowires. The morphology of the β-FeSi2 nanowires was observed with scanning electron microscopy (SEM), while the structure of them was analyzed with X-ray diffraction (XRD) and transmission electron microscopy (TEM). The growth mechanism has been proposed and the physical properties of the iron disilicide nanowires were measured as well. In terms of the magnetization of β-FeSi2, nanowires were found to be different from bulk and thin film; additionally, longer β-FeSi2 nanowires possessed better magnetic properties, showing the room-temperature ferromagnetic behavior. Field emission measurements demonstrate that β-FeSi2 nanowires can be applied in field emitters.


2003 ◽  
Vol 789 ◽  
Author(s):  
Seung Yong Bae ◽  
Hee Won Seo ◽  
Jeunghee Park

ABSTRACTVarious shaped single-crystalline gallium nitride (GaN) nanostructures were produced by chemical vapor deposition method in the temperature range of 900–1200 °C. Scanning electron microscopy, transmission electron microscopy, electron diffraction, x-ray diffraction, electron energy loss spectroscopy, Raman spectroscopy, and photoluminescence were used to investigate the structural and optical properties of the GaN nanostructures. We controlled the GaN nanostructures by the catalyst and temperature. The cylindrical and triangular shaped nanowires were synthesized using iron and gold nanoparticles as catalysts, respectively, in the temperature range of 900 – 1000 °C. We synthesized the nanobelts, nanosaws, and porous nanowires using gallium source/ boron oxide mixture. When the temperature of source was 1100 °C, the nanobelts having a triangle tip were grown. At the temperature higher up to 1200 °C the nanosaws and porous nanowires were formed with a large scale. The cylindrical nanowires have random growth direction, while the triangular nanowires have uniform growth direction [010]. The growth direction of the nanobelts is perpendicular to the [010]. Interestingly, the nanosaws and porous nanowires exhibit the same growth direction [011]. The shift of Raman, XRD, and PL bands from those of bulk was correlated with the strains of the GaN nanostructures.


1991 ◽  
Vol 220 ◽  
Author(s):  
F. Namavar ◽  
J. M. Manke ◽  
E. P. Kvam ◽  
M. M. Sanfacon ◽  
C. H. Perry ◽  
...  

ABSTRACTThe objective of this paper is to demonstrate the epitaxial growth of SiGe strained layers using atmospheric-pressure chemical vapor deposition (APCVD). We have grown SiGe layers with various thicknesses and Ge concentrations at temperatures ranging from 800–1000°C. The samples were studied using a variety of methods, including transmission electron microscopy (TEM), high resolution X-ray diffraction (HRXRD) and Raman spectroscopy (RS). Both HRXRD and RS results indicate that samples with about 10% Ge and a thickness of about 1000 Å are almost fully strained. TEM analyses of these samples indicate a film defect density less than 105/cm2. SIMS results indicate that the oxygen concentration in the epitaxial layers is lower than that found in CZ substrates.Our analyses also indicate that as-grown epitaxial Ge layers several microns thick have a defect density less than 107/cm2. The relatively low defect density in both SiGe and Ge layers grown on Si has been attributed to far higher dislocation glide velocity at the relatively elevated growth temperatures employed in CVD and to very good growth cleanliness.


2021 ◽  
Vol 21 (4) ◽  
pp. 2538-2544
Author(s):  
Nguyen Minh Hieu ◽  
Nguyen Hoang Hai ◽  
Mai Anh Tuan

Tin oxides nanowires were prepared by chemical vapor deposition using shadow mask. X-ray diffraction indicated that the products were tetragonal having crystalline structure with lattice constants a = 0.474 nm and c = 0.318 nm. The high-resolution transmission electron microscopy revealed that inter planar spacing is 0.25 nm. The results chemical mapping in scanning transmission electron microscopy so that the two elements of Oxygen and Tin are distributed very homogeneously in nanowires and exhibit no apparent elements separation. A bottom-up mechanism for SnO2 growth process has been proposed to explain the morphology of SnO2 nanowires.


2008 ◽  
Vol 23 (5) ◽  
pp. 1393-1397 ◽  
Author(s):  
Yongzhen Yang ◽  
Xuguang Liu ◽  
Bingshe Xu

Fe-encapsulating carbon nano onionlike fullerenes (NOLFs) were obtained by chemical vapor deposition (CVD) using heavy oil residue as carbon source and ferrocene as catalyst precursor in an argon flow of 150 mL/min at 900 °C for 30 min. Field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive spectroscopy (EDS), x-ray diffraction (XRD), and Raman spectroscopy were used to characterize morphology and microstructure of the products. The results show that Fe-encapsulating NOLFs collected at the outlet zone of quartz tube had core/shell structures with sizes ranging from 3 to 6 nm and outer shells composed of poorly crystallized graphitic layers. Their growth followed particle self-assembling growth mechanism, and all atoms in the graphite sheets primarily arose from Fe-carbide nanoparticles.


1987 ◽  
Vol 91 ◽  
Author(s):  
S. M. Vernon ◽  
S. J. Pearton ◽  
J. M. Gibson ◽  
R. Caruso ◽  
C. R. Abernathy ◽  
...  

ABSTRACTGaAs layers were grown directly on misoriented (2° off (100)→[011]) Si substrates by Metalorganic Chemical Vapor Deposition. The threading dislocation density at the surface of 4 μm thick layers was typically 108cm−2, as determined by both preferential etching and transmission electron microscopy. Rapid thermal annealing (900°C, 10s) improved the crystalline quality of the GaAs near the heterointerface while allowing no detectable Si diffusion into this layer. Two deep electron traps were observed in the undoped GaAs, but were present at a low concentration (∼ 1013 cm−3 ). The (400) x-ray diffraction peak width from the GaAs was significantly reduced with increasing GaAs layer thickness, indicating improved material quality. This is supported by Si implant activation data, which shows higher net donor activity in thicker layers.


1996 ◽  
Vol 441 ◽  
Author(s):  
Yan Chen ◽  
D. J. Johnson ◽  
R. H. Prince ◽  
Liping Guo ◽  
E. G. Wang

AbstractCrystalline C-N films composed of α- and β-C3N4, as well as other C-N phases, have been synthesized via bias-assisted hot-filament chemical vapor deposition using a gas mixture of nitrogen and methane. Scanning electron microscopy(SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the films. Lattice constants of the α- and β-C3N4 phases obtained coincide very well with the theoretical values. In addition to these phases, two new C-N phases in the films have been identified by TEM and XRD; one having a tetragonal structure with a = 5.65 Å, c = 2.75Å, and the second having a monoclinic structure with a = 5.065 Å, b= 11.5 Å, c = 2.801 Å and β = 96°. Their stoichiometric values and atomic arrangements have not yet been identified. Furthermore, variation in growth parameters, for example methane concentration, bias voltage, etc., can yield preferred growth of different C-N phases.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3645
Author(s):  
Liyao Zhang ◽  
Yuxin Song ◽  
Nils von den Driesch ◽  
Zhenpu Zhang ◽  
Dan Buca ◽  
...  

The structural properties of GeSn thin films with different Sn concentrations and thicknesses grown on Ge (001) by molecular beam epitaxy (MBE) and on Ge-buffered Si (001) wafers by chemical vapor deposition (CVD) were analyzed through high resolution X-ray diffraction and cross-sectional transmission electron microscopy. Two-dimensional reciprocal space maps around the asymmetric (224) reflection were collected by X-ray diffraction for both the whole structures and the GeSn epilayers. The broadenings of the features of the GeSn epilayers with different relaxations in the ω direction, along the ω-2θ direction and parallel to the surface were investigated. The dislocations were identified by transmission electron microscopy. Threading dislocations were found in MBE grown GeSn layers, but not in the CVD grown ones. The point defects and dislocations were two possible reasons for the poor optical properties in the GeSn alloys grown by MBE.


2010 ◽  
Vol 25 (7) ◽  
pp. 1272-1277 ◽  
Author(s):  
Jinjian Zheng ◽  
Zhiming Wu ◽  
Weihuang Yang ◽  
Shuping Li ◽  
Junyong Kang

Type II ZnO/ZnSe core/shell nanowire arrays were grown by a two-step chemical vapor deposition. The nanowire arrays with dense nanoislands on the surface are well aligned and normal to the substrate imaged by scanning electron microscopy. The core/shell structure of nanowires was identified by a high-resolution transmission electron microscopy. The structure and composition of the shell were confirmed to be wurtzite ZnSe by x-ray diffraction, Raman scattering and energy-dispersive x-ray spectroscopy. Moreover, an intense emission was observed at 1.89 eV smaller than the band gaps of core and shell materials by photoluminescence, indicating the achievement of the type II band alignment at the interface. This study is expected to contribute to the potential applications in novel photovoltaic devices.


Sign in / Sign up

Export Citation Format

Share Document