Low Temperature Synthesis of Silicon Oxide Nanowires

2005 ◽  
Vol 879 ◽  
Author(s):  
Rezina Siddique ◽  
George Sirinakis ◽  
Michael A. Carpenter

AbstractSilicon Nanowires (SiNWs) have many potential applications that include diodes, transistors, logic gates, circuitry, and sensors. SiNWs also open the possibility for integrating optoelectronics with microelectronics, since silicon has semiconducting properties and amorphous silicon nanowires have been shown to emit blue light. It has been demonstrated that SiNWs have tunable electrical properties, depending on the dopant used. With such a range of applications, the ability to mass-produce silicon nanowires simply and easily with no other source of silicon needed other than the substrate itself will prove very useful. Such methods have previously been reported, but our method involves production of the SiNWs at a lower temperature than those widely observed. A (100) silicon substrate was cleaned for five minutes each in ethanol followed by acetone. Films with thicknesses of less than 20 nm of either gold or 60/40 gold/palladium were deposited on the substrate through physical vapor deposition to serve as the growth center for the SiNWs. The samples were placed in a furnace and annealed to 900° C, under a 1500 sccm flow of argon at atmospheric pressure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for characterization of the SiNWs. The resulting SiNWs were amorphous in structure and very convoluted, with lengths on the order of tens of microns, diameters of 40 nm and a bed thickness of approximately 10 m. The effect of varying gold concentration, annealing time, temperature, and gas flow rate were then investigated. The results, which will be discussed in further detail, indicate that adjusting these parameters allows for control over the length, thickness, density, and morphology of the nanowires.

2014 ◽  
Vol 20 (4) ◽  
pp. 1271-1275 ◽  
Author(s):  
Wentao Qin ◽  
Donavan Alldredge ◽  
Douglas Heleotes ◽  
Alexander Elkind ◽  
N. David Theodore ◽  
...  

AbstractSilicon oxide used as an intermetal dielectric (IMD) incorporates oxide impurities during both its formation and subsequent processing to create vias in the IMD. Without a sufficient degassing of the IMD, oxide impurities released from the IMD during the physical vapor deposition (PVD) of the glue layer of the vias had led to an oxidation of the glue layer and eventual increase of the via resistances, which correlated with the O-to-Si atomic ratio of the IMD being ~10% excessive as verified by transmission electron microscopy (TEM) analysis. A vacuum bake of the IMD was subsequently implemented to enhance outgassing of the oxide impurities in the IMD before the glue layer deposition. The implementation successfully reduced the via resistances to an acceptable level.


Author(s):  
D. L. Callahan ◽  
Z. Ball ◽  
H. M. Phillips ◽  
R. Sauerbrey

Ultraviolet laser-irradiation can be used to induce an insulator-to-conductor phase transition on the surface of Kapton polyimide. Such structures have potential applications as resistors or conductors for VLSI applications as well as general utility electrodes. Although the percolative nature of the phase transformation has been well-established, there has been little definitive work on the mechanism or extent of transformation. In particular, there has been considerable debate about whether or not the transition is primarily photothermal in nature, as we propose, or photochemical. In this study, cross-sectional optical microscopy and transmission electron microscopy are utilized to characterize the nature of microstructural changes associated with the laser-induced pyrolysis of polyimide.Laser-modified polyimide samples initially 12 μm thick were prepared in cross-section by standard ultramicrotomy. Resulting contraction in parallel to the film surface has led to distortions in apparent magnification. The scale bars shown are calibrated for the direction normal to the film surface only.


1995 ◽  
Vol 403 ◽  
Author(s):  
G. Bai ◽  
S. Wittenbrock ◽  
V. Ochoa ◽  
R. Villasol ◽  
C. Chiang ◽  
...  

AbstractCu has two advantages over Al for sub-quarter micron interconnect application: (1) higher conductivity and (2) improved electromigration reliability. However, Cu diffuses quickly in SiO2and Si, and must be encapsulated. Polycrystalline films of Physical Vapor Deposition (PVD) Ta, W, Mo, TiN, and Metal-Organo Chemical Vapor Deposition (MOCVD) TiN and Ti-Si-N have been evaluated as Cu diffusion barriers using electrically biased-thermal-stressing tests. Barrier effectiveness of these thin films were correlated with their physical properties from Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), Secondary Electron Microscopy (SEM), and Auger Electron Spectroscopy (AES) analysis. The barrier failure is dominated by “micro-defects” in the barrier film that serve as easy pathways for Cu diffusion. An ideal barrier system should be free of such micro-defects (e.g., amorphous Ti-Si-N and annealed Ta). The median-time-to-failure (MTTF) of a Ta barrier (30 nm) has been measured at different bias electrical fields and stressing temperatures, and the extrapolated MTTF of such a barrier is > 100 year at an operating condition of 200C and 0.1 MV/cm.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Ye ◽  
Da Yin ◽  
Bin Wang ◽  
Qingwen Zhang

We report the synthesis of three-dimensional Fe3O4/graphene aerogels (GAs) and their application for the removal of arsenic (As) ions from water. The morphology and properties of Fe3O4/GAs have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and superconducting quantum inference device. The 3D nanostructure shows that iron oxide nanoparticles are decorated on graphene with an interconnected network structure. It is found that Fe3O4/GAs own a capacity of As(V) ions adsorption up to 40.048 mg/g due to their remarkable 3D structure and existence of magnetic Fe3O4nanoparticles for separation. The adsorption isotherm matches well with the Langmuir model and kinetic analysis suggests that the adsorption process is pseudo-second-ordered. In addition to the excellent adsorption capability, Fe3O4/GAs can be easily and effectively separated from water, indicating potential applications in water treatment.


2013 ◽  
Vol 320 ◽  
pp. 483-487 ◽  
Author(s):  
Ming Li ◽  
Deng Bing Li ◽  
Jing Pan ◽  
Guang Hai Li

W-doped VO2 (B) nanoneedles were successfully synthesized by solgel combing with hydrothermal treatment, in which the polyethylene glycol (PEG) was used as both surfactant and reducing. The metastable VO2 (B) was completely transformed to thermochromic VO2 (M) after annealing at high purity N2 atmosphere. The DSC results exhibit a strong crystallographic transition, and the phase transition temperature of VO2 (M) can be reduced to about 38 °C by W-doping. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) were used to characterize the morphology and crystalline structure of the samples. The variable-temperature infrared transmittance spectra of VO2 (M) demonstrate their potential applications in energy saving field.


2014 ◽  
Vol 979 ◽  
pp. 184-187
Author(s):  
Weerachon Phoohinkong ◽  
Thitinat Sukonket ◽  
Udomsak Kitthawee

Zinc sulfide (ZnS) nanostructures are important materials for many technologies such as sensors, infrared windows, transistors, LED displays, and solar cells. However, many methods of synthesizing ZnS nanostructures are complex and require expensive equipment. In this study, a liquid-solid chemical reaction without surfactant was used to synthesize ZnS at room temperature. In addition, commercial grade zinc oxide (ZnO) particles were used as a precursor. The effect of the addition of acids and inorganic salts were investigated. The products were characterized by field emission scanning electron microscopy (FESEM) coupled with energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The results show that the nanoparticles of ZnS were obtained in hydrochloric acid and acetic acid addition. The diameters were in the range of 10 to 20 nm and 50 to 100 nm, respectively. In the case of a sodium chloride salt addition, a ZnS structure was obtained with a particle size of approximately 5 nm and a flake-like morphology.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5798
Author(s):  
Bingliang Liang ◽  
Yunlong Ai ◽  
Yiliang Wang ◽  
Changhong Liu ◽  
Sheng Ouyang ◽  
...  

High-entropy oxides (HEOs) have attracted more and more attention because of their unique structures and potential applications. In this work, (FeCoCrMnZn)3O4 HEO powders were synthesized via a facile solid-state reaction route. The confirmation of phase composition, the observation of microstructure, and the analysis of crystal structure, distribution of elements, and valences of elements were conducted by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS), respectively. Furthermore, a (FeCoCrMnZn)3O4/nickel foam ((FeCoCrMnZn)3O4/NF) electrode was prepared via a coating method, followed by the investigation of its supercapacitor performance. The results show that, after calcining (FeCoCrMnZn)3O4 powders at 900 °C for 2 h, a single spinel structure (FCC, Fd-3m, a = 0.8399 nm) was obtained with uniform distribution of Fe, Co, Cr, Mn, and Zn elements, the typical characteristic of a high-entropy oxide. In addition, the mass specific capacitance of the (FeCoCrMnZn)3O4/NF composite electrode was 340.3 F·g−1 (with 1 M KOH as the electrolyte and 1 A·g−1 current density), which indicates that the (FeCoCrMnZn)3O4 HEO can be regarded as a prospective candidate for an electrode material in the field of supercapacitor applications.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 510 ◽  
Author(s):  
Jianhang Shi ◽  
Yanxin Wang ◽  
Linjun Huang ◽  
Peng Lu ◽  
Qiuyu Sun ◽  
...  

A novel anhydrous preparation of silica (SiO2)-encapsulated terbium (Tb3+) complex nanoparticles has been investigated. The SiO2-Tb3+ nanoparticles are incorporated in electrospun polyvinylpyrrolidone hybrid nanofibers. Transmission electron microscopy confirms that Tb3+ complexes are uniformly and stably encapsulated in or carried by nanosilica. The influence of pH on the fluorescence of Tb3+ complexes is discussed. The properties, composition, structure, and luminescence of the resulting SiO2–Tb3+ hybrid nanoparticles are investigated in detail. There is an increase in the fluorescence lifetime of SiO2–Tb3+ nanoparticles and SiO2–Tb3+/polyvinylpyrrolidone (PVP) hybrid nanofibers compared with the pure Tb3+ complexes. Due to the enhanced optical properties, the fluorescent hybrid nanofibers have potential applications as photonic and photoluminescent materials.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2801 ◽  
Author(s):  
Asem Elabasy ◽  
Ali Shoaib ◽  
Muhammad Waqas ◽  
Mingxing Jiang ◽  
Zuhua Shi

Using nanotechnology to develop new formulations of pesticides is considered a possible option in enhancing the efficiency, safety, and photostability of pesticides under various climatic conditions. In the present study, two novel nanoformulations (NFs) were successfully prepared based on nano-delivery systems for emamectin benzoate (EMB) by loading it on cellulose nanocrystals (CNCs) and silicon dioxide nanoparticles (SNPs) as carriers through a freeze-drying method. The synthesized nanoformulations were examined using field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and dynamic light scattering (DLS). The results showed that SNPs and CNCs had a loading efficiency of 43.31% and 15.04% (w/w) for EMB, respectively, and could effectively protect EMB from photolysis under UV radiation. The LC50 values for EMB + SNPs, EMB + CNCs, and EMB commercial formulation against Phenacoccus solenopsis were 0.01, 0.05, and 0.31 μg/mL, respectively, indicating that both NFs were more effective than the EMB commercial formulation. This work seeks to develop new nano-carriers for potential applications of pesticides in plant protection, which will reduce the recommended dose of pesticides and thereby decrease the amount of pesticide residue in food and the environment.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Carmen Steluta Ciobanu ◽  
Simona Liliana Iconaru ◽  
Florian Massuyeau ◽  
Liliana Violeta Constantin ◽  
Adrian Costescu ◽  
...  

The luminescent europium-doped hydroxyapatite (Eu:HAp, Ca10−xEux(PO4)6(OH)2) with0≤x≤0.2nanocrystalline powders was synthesized by coprecipitation. The structural, morphological, and textural properties were well characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The vibrational studies were performed by Fourier transform infrared, Raman, and photoluminescence spectroscopies. The X-ray diffraction analysis revealed that hydroxyapatite is the unique crystalline constituent of all the samples, indicating that Eu has been successfully inserted into the HAp lattice. Eu doping inhibits HAp crystallization, leading to a decrease of the average crystallite size from around 20 nm in the undoped sample to around 7 nm in the sample with the highest Eu concentration. Furthermore, the samples show the characteristic5D0→7F0transition observed at 578 nm related to Eu3+ions distributed on Ca2+sites of the apatitic structure.


Sign in / Sign up

Export Citation Format

Share Document