What is Behind the Inverse Hall-Petch Behavior in Nanocrystalline Materials?

2006 ◽  
Vol 976 ◽  
Author(s):  
Christopher Carlton ◽  
P. J. Ferreira

AbstractAn inverse Hall-Petch effect has been observed for nanocrystalline materials by a large number of researchers. This result implies that nanocrystalline materials get softer as grain size is reduced below a critical value. Postulated explanations for this behavior include dislocation based mechanisms and diffusion based mechanisms. In this paper, we report an explanation for the inverse Hall-Petch effect based on the statistical absorption of dislocations by grain boundaries, showing that the yield strength is both dependent on strain rate and temperature, and that it deviates from the Hall-Petch relationship at a critical grain size.

1995 ◽  
Vol 400 ◽  
Author(s):  
D. Wolf ◽  
S. R. Phillpot ◽  
P. Keblinski

AbstractAtomistic simulations show that high-energy grain boundaries in nanocrystalline copper and nanocrystalline silicon are highly disordered. In the case of silicon the structures of the grain boundaries are essentially indistinguishable from that of bulk amorphous silicon. Based on a free-energy argument, we suggest that below a critical grain size nanocrystalline materials should be unstable with respect to the amorphous phase.


2001 ◽  
Author(s):  
J. Narayan ◽  
H. Wang ◽  
A. Kvit

Abstract We have synthesized nanocrystalline thin films of Cu, Zn, TiN, and WC having uniform grain size in the range of 5 to 100 nm. This was accomplished by introducing a couple of manolayers of materials with high surface and have a weak interaction with the substrate. The hardness measurements of these well-characterized specimens with controlled microstructures show that hardness initially increases with decreasing grain size following the well-known Hall-Petch relationship (H∝d−½). However, there is a critical grain size below which the hardness decreases with decreasing grain size. The experimental evidence for this softening of nanocrystalline materials at very small grain sizes (referred as reverse Hall-Petch effect) is presented for the first time. Most of the plastic deformation in our model is envisioned to be due to a large number of small “sliding events” associated with grain boundary shear or grain boundary sliding. This grain-size dependence of hardness can be used to create functionally gradient materials for improved adhesion and wear among other improved properties.


2002 ◽  
Vol 750 ◽  
Author(s):  
J. Narayan

ABSTRACTWe have designed a unique synthesis procedure to create nonomaterials of uniform grain size and control the chemistry of interfaces between the grains. The metastability of nanocrystalline materials is a major challenge which can be addressed by controlling the chemistry of interfaces. The hardness of these films having a uniform size was measured as a function of grain size using a nanoindentation technique. It was found that hardness increased with decreasing grain size in accordance with Hall-Petch model. However, below a critical grain size we observed a decrease or softening with a further decrease in grain size. These observations in metals and ceramics are modeled in view of intragrain deformation (Hall-Petch regime) and intergrain deformation (grain boundary shear/sliding )in the softening regime. Since we can change the alloying of interfacial region, we can address the metastability as a function of temperature, which is crucial from applications viewpoint of these materials.


2010 ◽  
Vol 168-170 ◽  
pp. 1581-1585 ◽  
Author(s):  
Dong Ying Xu ◽  
Hao Yu

Orientations distribution between grains of two high grade pipeline steels were investigated by electron back-scattered diffraction (EBSD). Then the percentage of low-angle grain boundaries was studied qualitatively to analyze the effect of low-angle grain boundaries on the yield-strength ratio of high grade pipeline steels. From the mode of coordinate deformation and the ability to resist deformation by the grain boundaries, the results show that when the effective grain size are almost the same, the pipeline steel which has the smaller percentage of low-angle grain boundaries, the larger difference between the yield strength and tensile strength, which makes the yield-strength ratio of pipeline steel lower.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6966
Author(s):  
Qian Li ◽  
Jiayong Zhang ◽  
Huayuan Tang ◽  
Hongwu Zhang ◽  
Hongfei Ye ◽  
...  

Based on molecular dynamics simulations, the creep behaviors of nanocrystalline Ni before and after the segregation of Mo atoms at grain boundaries are comparatively investigated with the influences of external stress, grain size, temperature, and the concentration of Mo atoms taken into consideration. The results show that the creep strain rate of nanocrystalline Ni decreases significantly after the segregation of Mo atoms at grain boundaries due to the increase of the activation energy. The creep mechanisms corresponding to low, medium, and high stress states are respectively diffusion, grain boundary slip and dislocation activities based on the analysis of stress exponent and grain size exponent for both pure Ni and segregated Ni-Mo samples. Importantly, the influence of external stress and grain size on the creep strain rate of segregated Ni-Mo samples agrees well with the classical Bird-Dorn-Mukherjee model. The results also show that segregation has little effect on the creep process dominated by lattice diffusion. However, it can effectively reduce the strain rate of the creep deformation dominated by grain boundary behaviors and dislocation activities, where the creep rate decreases when increasing the concentration of Mo atoms at grain boundaries within a certain range.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3223 ◽  
Author(s):  
Abdelrahim Husain ◽  
Peiqing La ◽  
Yue Hongzheng ◽  
Sheng Jie

In the present study, molecular dynamics simulations were employed to investigate the effect of strain rate on the plastic deformation mechanism of nanocrystalline 316 L stainless-steel, wherein there was an average grain of 2.5–11.5 nm at room temperature. The results showed that the critical grain size was 7.7 nm. Below critical grain size, grain boundary activation was dominant (i.e., grain boundary sliding and grain rotation). Above critical grain size, dislocation activities were dominant. There was a slight effect that occurred during the plastic deformation mechanism transition from dislocation-based plasticity to grain boundaries, as a result of the stress rate on larger grain sizes. There was also a greater sensitive on the strain rate for smaller grain sizes than the larger grain sizes. We chose samples of 316 L nanocrystalline stainless-steel with mean grain sizes of 2.5, 4.1, and 9.9 nm. The values of strain rate sensitivity were 0.19, 0.22, and 0.14, respectively. These values indicated that small grain sizes in the plastic deformation mechanism, such as grain boundary sliding and grain boundary rotation, were sensitive to strain rates bigger than those of the larger grain sizes. We found that the stacking fault was formed by partial dislocation in all samples. These stacking faults were obstacles to partial dislocation emission in more sensitive stress rates. Additionally, the results showed that mechanical properties such as yield stress and flow stress increased by increasing the strain rate.


Author(s):  
L. S. Lin ◽  
G. W. Levan ◽  
S. M. Russell ◽  
C. C. Law

Recent efforts at P&W have shown that the addition of cobalt to binary NiAl results in an appreciable increase in room temperature ductility. One version of this ternary alloy, designated VIM A, has a composition of Ni-30 at.% Al-35 at.% Co. The addition of 0.5 at.% Hf to this alloy (designated VIM AH) results in an improvement in yield strength at 760°C. Room temperature properties were not found to be significantly affected by the Hf addition. This discussion will focus on the microstructures of alloys VIM A and VIM AH and their relationship to the mechanical properties observed in compression at room temperature and 760°C.The addition of hafnium reduced the grain size of VIM AH alloy. After room temperature compression, both alloys show an ordered bcc (B2) matrix and precipitates which are distributed primarily along grain boundaries. These precipitates were identified by microdiffraction to be ordered fcc (L12) gamma prime for VIM A and hexagonal (A3) for VIM AH.


2000 ◽  
Author(s):  
Yi Liu ◽  
Kelly Shue ◽  
Xin Wu ◽  
Zhicheng Li ◽  
Yongbo Xu

Abstract Commercial Mg-3Al-Zn alloys (AZ31) with initial large grains (∼250μm) has been found superplastic at a strain rate of 0.5×10−2s−1 and at 350–500 C. The maximum elongation to failure of 170% at 500°C was obtained. Scanning electron microscope observations with electron back-scattering diffraction technique (SEM-EBSD) indicate that during deformation significant grain size reduction occurred, the average grain size reduced from about 250μm before deformation to about 50μm after deformation at temperatures from 300 C to 400°C, it reduced to about 100μm if deformed at above 400°C. The observed grain refinement at lower temperature and grain growth at higher temperature during the superplastic deformation is believed to be the result of the competing processes between dynamic recrystallization and dynamic grain growth, which are temperature and strain rate dependent. Transmission electron microscope (TEM) observations indicates that most of the grain boundaries are large-angle grain boundaries, though small amount of small-angle grain boundaries are also observed. The density of dislocations in the grains is very low in these superplasticlly deformed samples. It is evident that grain boundary played a role as the source and sink of the dislocation, being responsible for combined dislocation creep and diffusional creel. Therefore, the very large elongation obtained at the very high strain rates and high temperatures is attributed to dynamic dislocation hardening, recovery and recrystallization.


2001 ◽  
Vol 683 ◽  
Author(s):  
Dilip Chandrasekaran ◽  
Kjell Pettersson

ABSTRACTThe strengthening effect of grain boundaries is well established and observed experimentally as the Hall-Petch relationship. In this paper different mechanisms proposed in the literature to explain the observed Hall-Petch effect are reviewed critically. The fundamental implications of the different approaches are discussed with reference to experimental data for two different classes of materials;-Materials with locked dislocations, i.e. with a sharp yield point behaviour.-Materials without locked dislocations, i.e. with a smooth yielding behaviour.It is shown that a simple model (Bergström) can be used to understand the grain size strengthening in the latter class of materials while more work is needed to quantitatively understand the behaviour of materials showing a sharp yield point.


Sign in / Sign up

Export Citation Format

Share Document