scholarly journals Identification of Reclamation Area in Ancol of North Jakarta Using Resistivity Method

Jurnal Segara ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 67
Author(s):  
Dino Gunawan Pryambodo ◽  
Joko Prihantono ◽  
Syaiful Imam ◽  
Abdurrahman Wafi ◽  
Panganggit Sasmito

The coastal reclamation area is an expansion of coastal areas through technical engineering to develop new land areas. Identification of the reclamation area can be performed by detecting subsurface imaging using the resistivity method. This study used a multi-electrode (multichannel) resistivity imaging method. The resistivity imaging results show a good response of subsurface resistivity and successfully identified reclamation area with low resistivity <27.8 Ωm in almost the study area. Its depth varies from 4 meters to 30 meters. The reclamation results are composed of loose rock that has not been fully compacted, so it has not been well consolidated. As a result, it will experience land subsidence if overload.

2014 ◽  
Vol 3 (1) ◽  
pp. 14-23 ◽  
Author(s):  
Krajewska Olga ◽  
Michał Glazer ◽  
Pierwoła Jolanta

Abstract Conducted by "Olkusz" Speleological Club exploratory works related to the Gieńkówka cave led only to its partial opening. There are indications stating that this cave has continuation beyond its currently available parts. In order to verify those assumptions resistivity imaging method has been used. During analysis of the resistivity models obtained from field measurements the synthetic model, simulating the intersection of the cave corridor, has been utilized. In order to assess the reliability of resistivity cross sections in terms of the presence of artifacts left by the inversion process Depth of Investigation (DOI) index has been applied. For preparing DOI maps two inversions on the same data set were carried out using different reference models. Then the results were compared to each other. High resistivity anomalies revealed on obtained models show strong correlation with actual caves known in this area. In addition, similar anomalies have been found in place of the predicted continuity in Gieńkówka cave, thus confirming the hypothesis made in this research. High DOI index values in the occurrence of caves pointing to the instability of the inversion process in those areas


2021 ◽  
Vol 11 (11) ◽  
pp. 5219
Author(s):  
Yosuke Sakurai ◽  
Hirotaka Sato ◽  
Nozomu Adachi ◽  
Satoshi Morooka ◽  
Yoshikazu Todaka ◽  
...  

As a new method for evaluating single crystals and oligocrystals, pulsed neutron Bragg-dip transmission analysis/imaging method is being developed. In this study, a single Bragg-dip profile-fitting analysis method was newly developed, and applied for analyzing detailed inner information in a crystalline grain position-dependently. In the method, the spectrum profile of a single Bragg-dip is analyzed at each position over a grain. As a result, it is expected that changes in crystal orientation, mosaic spread angle and thickness of a perfect crystal can be evaluated from the wavelength, the width and the integrated intensity of the Bragg-dip, respectively. For confirming this effectiveness, the method was applied to experimental data of position-dependent Bragg-dip transmission spectra of a Si-steel plate consisting of oligocrystals. As a result, inner information of multiple crystalline grains could be visualized and evaluated. The small change in crystal orientation in a grain, about 0.4°, could be observed by imaging the Bragg-dip wavelengths. By imaging the Bragg-dip widths, both another grain and mosaic block in a grain were detected. Furthermore, imaging results of the integrated intensities of Bragg-dips were consistent with the results of Bragg-dip width imaging. These small crystallographic changes have not been observed and visualized by previous Bragg-dip analysis methods.


2021 ◽  
Vol 13 (16) ◽  
pp. 8690
Author(s):  
Caiyao Xu ◽  
Lijie Pu ◽  
Fanbin Kong ◽  
Bowei Li

Coastal ecological protection and restoration projects aimed to restore and recover the ecological environment of coastal wetland with high-intensity human reclamation activity, while the integrity of the coastal wetland system with human reclamation activity and the ability of individual land use types to control the overall system were not fully considered. In this study, a six-stage land use conversion network was constructed by using a complex network model to analyze coastal land use dynamic changes in the coastal reclamation area located in eastern China from 1977 to 2016. The results showed that land use types had gradually transformed from being dominated by natural types to artificial types, and the speed of transformation was accelerating. The proportion of un-reclaimed area decreased from 93% in 1977 to 46% in 2007, and finally fell to 8% in 2014 and 2016. Tidal flat and halophytic vegetation were the main output land use types, while cropland, woodland and aquaculture pond were the main input land use types. Cropland had the highest value of betweenness centrality, which played a key role in land use change from 1992 to 2014. The land use system of the coastal reclamation area was the most stable in 2002–2007, followed by 1984–1992, and the most unstable in 2007–2014. The Chinese and local government should carry out some measures to improve the land use in coastal wetland ecosystems, including the allocation and integration of land use for production space, living space, and ecological space, and develop multi-functionality of land use to realize the coastal high-quality development and coastal ecological protection and restoration.


2012 ◽  
Vol 116 (4) ◽  
pp. 697-702 ◽  
Author(s):  
Neil Roundy ◽  
Johnny B. Delashaw ◽  
Justin S. Cetas

Object Facial nerve paresis can be a devastating complication following resection of large (> 2.5 cm) cerebellopontine angle (CPA) tumors. The authors have developed and used a new high-density diffusion tensor imaging (HD-DT imaging) method, aimed at preoperatively identifying the location and course of the facial nerve in relation to large CPA tumors. Their study objective was to preoperatively identify the facial nerve in patients with large CPA tumors and compare their HD-DT imaging method with a traditional standard DT imaging method and correlate with intraoperative findings. Methods The authors prospectively studied 5 patients with large (> 2.5 cm) CPA tumors. All patients underwent preoperative traditional standard- and HD-DT imaging. Imaging results were correlated with intraoperative findings. Results Utilizing their HD-DT imaging method, the authors positively identified the location and course of the facial nerve in all patients. In contrast, using a standard DT imaging method, the authors were unable to identify the facial nerve in 4 of the 5 patients. Conclusions The HD-DT imaging method that the authors describe and use has proven to be a powerful, accurate, and rapid method for preoperatively identifying the facial nerve in relation to large CPA tumors. Routine integration of HD-DT imaging in preoperative planning for CPA tumor resection could lead to improved facial nerve preservation.


2017 ◽  
Vol 10 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Zhiming Chen ◽  
Guanghui Huang

AbstractWe propose a reliable direct imaging method based on the reverse time migration for finding extended obstacles with phaseless total field data. We prove that the imaging resolution of the method is essentially the same as the imaging results using the scattering data with full phase information when the measurement is far away from the obstacle. The imaginary part of the cross-correlation imaging functional always peaks on the boundary of the obstacle. Numerical experiments are included to illustrate the powerful imaging quality


2021 ◽  
Vol 2083 (3) ◽  
pp. 032050
Author(s):  
Qian Han ◽  
Pengbo Wang ◽  
Xinkai Zhou ◽  
Xinchang Hu ◽  
Yanan Guo

Abstract 3D back projection (BP) algorithm is an imaging algorithm based on time domain echo data, which effectively solves the overlapping mask problem existing in 2D SAR. It can complete the imaging processing of echo signal under any geometry configuration, and has the advantages of high target focusing accuracy and high phase preservation. However, the high complexity and low efficiency of 3D BP imaging algorithm limit its application and development. In this paper, a 3d imaging method based on improved back projection algorithm is proposed. Aiming at the problem that existing imaging algorithms need 2D imaging first and then 3D imaging, an improved 3D BP algorithm is proposed to directly 3D imaging, which avoids 2d imaging processing. The proposed method simplifies the steps of the traditional 3D BP algorithm and improves the efficiency of the algorithm. The validity and effectiveness of the proposed method are verified by the 3d imaging results of simulated lattice targets.


2016 ◽  
Vol 712 ◽  
pp. 303-307 ◽  
Author(s):  
Maxim V. Trigub ◽  
Stanislav N. Torgaev ◽  
Gennadiy S. Evtushenko ◽  
Vitaliy V. Drobchik

The imaging results of different processes blocked from the observation by the intense background light are presented in this paper. Active optical systems based on high-frequency brightness amplifier are used to decrease the negative factor of the glare. The experimental and modeling results on obtaining high pulse repetition frequencies (PRF) (more than 100 kHz) of copper bromide vapor brightness amplifiers operating in a low input energy mode are shown. The use of metal vapor brightness amplifiers for visual non-destructive testing of fast processes obscured by the glare is also discussed. It has been shown that the imaging method proposed in this paper proves to be the most reliable to obtain the information about objects or processes in a real time mode using high PRF CuBr active media.


2020 ◽  
Vol 12 (16) ◽  
pp. 2641
Author(s):  
Shunjun Wei ◽  
Jiadian Liang ◽  
Mou Wang ◽  
Xiangfeng Zeng ◽  
Jun Shi ◽  
...  

Compressive sensing (CS) has been widely utilized in inverse synthetic aperture radar (ISAR) imaging, since ISAR measured data are generally non-completed in cross-range direction, and CS-based imaging methods can obtain high-quality imaging results using under-sampled data. However, the traditional CS-based methods need to pre-define parameters and sparse transforms, which are tough to be hand-crafted. Besides, these methods usually require heavy computational cost with large matrices operation. In this paper, inspired by the adaptive parameter learning and rapidly reconstruction of convolution neural network (CNN), a novel imaging method, called convolution iterative shrinkage-thresholding (CIST) network, is proposed for ISAR efficient sparse imaging. CIST is capable of learning optimal parameters and sparse transforms throughout the CNN training process, instead of being manually defined. Specifically, CIST replaces the linear sparse transform with non-linear convolution operations. This new transform and essential parameters are learnable end-to-end across the iterations, which increases the flexibility and robustness of CIST. When compared with the traditional state-of-the-art CS imaging methods, both simulation and experimental results demonstrate that the proposed CIST-based ISAR imaging method can obtain imaging results of high quality, while maintaining high computational efficiency. CIST-based ISAR imaging is tens of times faster than other methods.


Sign in / Sign up

Export Citation Format

Share Document