scholarly journals Construction an expression vector and Agrobacterium tumefaciens strain carrying ZmbZIP72 gene isolated from maize

2018 ◽  
Vol 15 (2) ◽  
pp. 333-340
Author(s):  
Phạm Thị Hằng ◽  
Hà Hồng Hạnh ◽  
Nguyễn Thùy Linh ◽  
Lê Thị Thu Hiền ◽  
Nông Văn Hải ◽  
...  

In plants, members of bZIP transcription factors are involved in various biological processes such as organ and tissue differentiation or vascular development. Moreover, the basic leucine zipper (bZIP) is one of the largest transcription factor families which play an important role in environmental stress responses. However, few bZIP genes are related to abiotic stress responses. Some studies have found that transgenic plants overexpressing the bZIP genes enhanced tolerance to abiotic stresses. Several of stress-related genes in maize have been identified and characterized. A ZmbZIP72 gene belonged to A group could be strongly induced by ABA and abiotic stresses. Some previous studies have shown that overexpression of the ZmbZIP72 gene resulted in improved drought and salt tolerance of a transgenic Arabidopsis. In this work, the ZmbZIP72 gene from drought-treated maize was isolated and sequenced with 894 bp in full-length of the coding region. Nucleotide comparison of the ZmbZIP72 gene and a GenBank sequence (accession number HQ328839) revealed that two changes were found at positions 486 (A to C) and 493 (C to T), respectively. Changes in predicted amino acid sequence were at positions 102 (Lys>Asp) and 105 (Pro>Ser). The newly isolated ZmbZIP72 gene was ligated with RD29A promoter and 35S terminator to create a RD29::ZmbZIP72::35S cassette in pRTL2 vector. Afterwards, this cassette was constructed into pCAMBIA1301 and the new recombinant pCAMBIA1301 vector carrying ZmbZIP72 construct has transformed into A. tumefaciens strain EHA105 which is material for plant transformation.

2020 ◽  
Vol 8 (7) ◽  
pp. 1045
Author(s):  
Yuping Xu ◽  
Yongchun Wang ◽  
Huizhang Zhao ◽  
Mingde Wu ◽  
Jing Zhang ◽  
...  

The basic leucine zipper (bZIP) proteins family is one of the largest and most diverse transcription factors, widely distributed in eukaryotes. However, no information is available regarding the bZIP gene family in Coniothyrium minitans, an important biocontrol agent of the plant pathogen Sclerotinia sclerotiorum. In this study, we identified 34 bZIP genes from the C. minitans genome, which were classified into 8 groups based on their phylogenetic relationships. Intron analysis showed that 28 CmbZIP genes harbored a variable number of introns, and 15 of them shared a feature that intron inserted into the bZIP domain. The intron position in bZIP domain was highly conserved, which was related to recognize the arginine (R) and could be treated as a genomic imprinting. Expression analysis of the CmbZIP genes in response to abiotic stresses indicated that they might play distinct roles in abiotic stress responses. Results showed that 22 CmbZIP genes were upregulated during the later stage of conidial development. Furthermore, transcriptome analysis indicated that CmbZIP genes are involved in different stages of mycoparasitism. Among deletion mutants of four CmbZIPs (CmbZIP07, -09, -13, and -16), only ΔCmbZIP16 mutants significantly reduced its tolerance to the oxidative stress. The other mutants exhibited no significant effects on colony morphology, mycelial growth, conidiation, and mycoparasitism. Taken together, our results suggested that CmbZIP genes play important roles in the abiotic stress responses, conidial development, and mycoparasitism. These results provide comprehensive information of the CmbZIP gene family and lay the foundation for further research on the bZIP gene family regarding their biological functions and evolutionary history.


2020 ◽  
Author(s):  
Peisen Su ◽  
Jun Yan ◽  
Wen Li ◽  
Liang Wang ◽  
Jinxiao Zhao ◽  
...  

Abstract Background: Salt and drought are the main abiotic stresses that restrict the yield of crops. Peroxidases (PRXs) are involved in various abiotic stress responses. Furthermore, only few wheat PRXs have been characterized in the mechanism of the abiotic stress response.Results: In this study, a novel wheat peroxidase (PRX) gene named TaPRX-2A, a member of wheat class III PRX gene family, was cloned and its response to salt stress was characterized. Based on the identification and evolutionary analysis of class III PRXs in 12 plants, we proposed an evolutionary model for TaPRX-2A, suggesting that occurrence of some exon fusion events during evolution. We also detected the positive selection of PRX domain in 13 PRXs involving our evolutionary model, and found 2 or 6 positively selected sites during TaPRX-2A evolution. Quantitative reverse transcription–polymerase chain reaction (qRT–PCR) results showed that TaPRX-2A exhibited relatively higher expression levels in root tissue than those exhibited in leaf and stem tissues. TaPRX-2A expression was also induced by abiotic stresses and hormone treatments such as polyethylene glycol 6000, NaCl, hydrogen peroxide (H2O2), salicylic acid (SA), methyljasmonic acid (MeJA) and abscisic acid (ABA). Transgenic wheat plants with overexpression of TaPRX-2A showed higher tolerance to salt stress than wild-type (WT) plants. Confocal microscopy revealed that TaPRX-2A-eGFP was mainly localized in cell nuclei. Survival rate, relative water content, and shoot length were higher in TaPRX-2A-overexpressing wheat than in the WT wheat, whereas root length was not significantly different. The activities of s superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced in TaPRX-2A-overexpressing wheat compared with those in the WT wheat, resulting in the reduction of reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content. The expression levels of downstream stress-related genes showed that RD22, TLP4, ABAI, GST22, FeSOD, and CAT exhibited higher expressions in TaPRX-2A-overexpressing wheat than in WT under salt stress.Conclusions: The results show that TaPRX-2A plays a positive role in the response to salt stress by scavenging ROS and regulating stress-related genes.


2010 ◽  
Vol 23 (8) ◽  
pp. 1053-1068 ◽  
Author(s):  
Min Guo ◽  
Wang Guo ◽  
Yue Chen ◽  
Suomeng Dong ◽  
Xing Zhang ◽  
...  

Magnaporthe oryzae is the causal agent of rice blast disease, leading to enormous losses of rice production. Here, we characterized a basic leucine zipper (bZIP) transcription factor, Moatf1, in M. oryzae, a homolog of Schizosaccharomyces pombe ATF/CREB that regulates the oxidative stress response. Moatf1 deletion caused retarded vegetative growth of mycelia, and the Moatf1 mutant exhibited higher sensitivity to hydrogen peroxide (H2O2) than did the wild-type strain. The mutant showed severely reduced activity of extracellular enzymes and transcription level of laccases and peroxidases and exhibited significantly reduced virulence on rice cultivar CO-39. On rice leaf sheath, most of the infectious hyphae of the mutant became swollen and displayed restricted growth in primary infected cells. Defense response was strongly activated in plants infected by the mutant. Diamino benzidine staining revealed an accumulation of H2O2 around Moatf1 mutant appressoria and rice cells with Moatf1 hyphae that was absent in the wild type. Inhibition of the plant NADPH oxidase by diphenyleneiodonium prevented host-derived H2O2 accumulation and restored infectious hyphal growth of the mutant in rice cells. Thus, we conclude that Moatf1 is necessary for full virulence of M. oryzae by regulating the transcription of laccases and peroxidases to impair reactive oxygen species–mediated plant defense.


2020 ◽  
Author(s):  
Peisen Su ◽  
Jun Yan ◽  
Wen Li ◽  
Liang Wang ◽  
Jinxiao Zhao ◽  
...  

Abstract Background: Salt and drought are the main abiotic stresses that restrict the yield of crops. Peroxidases (PRXs) are involved in various abiotic stress responses. Furthermore, only few wheat PRXs have been characterized in the mechanism of the abiotic stress response.Results: In this study, a novel wheat peroxidase (PRX) gene named TaPRX-2A, a member of wheat class III PRX gene family, was cloned and its response to salt stress was characterized. Based on the identification and evolutionary analysis of class III PRXs in 12 plants, we proposed an evolutionary model for TaPRX-2A, suggesting that occurrence of some exon fusion events during evolution. We also detected the positive selection of PRX domain in 13 PRXs involving our evolutionary model, and found 2 or 6 positively selected sites during TaPRX-2A evolution. Quantitative reverse transcription–polymerase chain reaction (qRT–PCR) results showed that TaPRX-2A exhibited relatively higher expression levels in root tissue than those exhibited in leaf and stem tissues. TaPRX-2A expression was also induced by abiotic stresses and hormone treatments such as polyethylene glycol 6000, NaCl, hydrogen peroxide (H2O2), salicylic acid (SA), methyljasmonic acid (MeJA) and abscisic acid (ABA). Transgenic wheat plants with overexpression of TaPRX-2A showed higher tolerance to salt stress than wild-type (WT) plants. Confocal microscopy revealed that TaPRX-2A-eGFP was mainly localized in cell nuclei. Survival rate, relative water content, and shoot length were higher in TaPRX-2A-overexpressing wheat than in the WT wheat, whereas root length was not significantly different. The activities of s superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced in TaPRX-2A-overexpressing wheat compared with those in the WT wheat, resulting in the reduction of reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content. The expression levels of downstream stress-related genes showed that RD22, TLP4, ABAI, GST22, FeSOD, and CAT exhibited higher expressions in TaPRX-2A-overexpressing wheat than in WT under salt stress.Conclusions: The results show that TaPRX-2A plays a positive role in the response to salt stress by scavenging ROS and regulating stress-related genes.


Database ◽  
2020 ◽  
Vol 2020 ◽  
Author(s):  
Wenyi Wu ◽  
Yan Wu ◽  
Dahui Hu ◽  
Yincong Zhou ◽  
Yanshi Hu ◽  
...  

Abstract Non-coding RNAs (ncRNAs) are recognized as key regulatory molecules in many biological processes. Accumulating evidence indicates that ncRNA-related mechanisms play important roles in plant stress responses. Although abundant plant stress-responsive ncRNAs have been identified, these experimentally validated results have not been gathered into a single public domain archive. Therefore, we established PncStress by curating experimentally validated stress-responsive ncRNAs in plants, including microRNAs, long non-coding RNAs and circular RNAs. The current version of PncStress contains 4227 entries from 114 plants covering 48 biotic and 91 abiotic stresses. For each entry, PncStress has biological information and network visualization. Serving as a manually curated database, PncStress will become a valuable resource in support of plant stress response research.


Author(s):  
Marta-Marina Pérez-Alonso ◽  
Paloma Ortiz-García ◽  
José Moya-Cuevas ◽  
Thomas Lehmann ◽  
Beatriz Sánchez-Parra ◽  
...  

Abstract The evolutionary success of plants relies to a large extent on their extraordinary ability to adapt to changes in their environment. These adaptations require that plants balance their growth with their stress responses. Plant hormones are crucial mediators orchestrating the underlying adaptive processes. However, whether and how the growth-related hormone auxin and the stress-related hormones jasmonic acid, salicylic acid, and abscisic acid (ABA) are coordinated remains largely elusive. Here, we analyse the physiological role of AMIDASE 1 (AMI1) in Arabidopsis plant growth and its possible connection to plant adaptations to abiotic stresses. AMI1 contributes to cellular auxin homeostasis by catalysing the conversion of indole-acetamide into the major plant auxin indole-3-acetic acid. Functional impairment of AMI1 increases the plant’s stress status rendering mutant plants more susceptible to abiotic stresses. Transcriptomic analysis of ami1 mutants disclosed the reprogramming of a considerable number of stress-related genes, including jasmonic acid and ABA biosynthesis genes. The ami1 mutants exhibit only moderately repressed growth but an enhanced ABA accumulation, which suggests a role for AMI1 in the crosstalk between auxin and ABA. Altogether, our results suggest that AMI1 is involved in coordinating the trade-off between plant growth and stress responses, balancing auxin and ABA homeostasis.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Yanhui Liu ◽  
Mengnan Chai ◽  
Man Zhang ◽  
Qing He ◽  
Zhenxia Su ◽  
...  

This study identified 57 basic leucine zipper (bZIP) genes from the pineapple genome, and the analysis of these bZIP genes was focused on the evolution and divergence after multiple duplication events in relation to the pineapple genome fusion. According to bioinformatics analysis of a phylogenetic tree, the bZIP gene family was divided into 11 subgroups in pineapple, Arabidopsis, and rice; gene structure and conserved motif analyses showed that bZIP genes within the same subgroup shared similar intron-exon organizations and motif composition. Further synteny analysis showed 17 segmental duplication events with 27 bZIP genes. The study also analyzed the pineapple gene expression of bZIP genes in different tissues, organs, and developmental stages, as well as in abiotic stress responses. The RNA-sequencing data showed that AcobZIP57 was upregulated in all tissues, including vegetative and reproductive tissues. AcobZIP28 and AcobZIP43 together with the other 25 bZIP genes did not show high expression levels in any tissue. Six bZIP genes were exposed to abiotic stress, and the relative expression levels were detected by quantitative real-time PCR. A significant response was observed for AcobZIP24 against all kinds of abiotic stresses at 24 and 48 h in pineapple root tissues. Our study provides a perspective for the evolutionary history and general biological involvement of the bZIP gene family of pineapple, which laid the foundation for future functional characterization of the bZIP genes in pineapple.


2013 ◽  
Vol 12 (10) ◽  
pp. 1403-1412 ◽  
Author(s):  
Heber Gamboa-Meléndez ◽  
Apolonio I. Huerta ◽  
Howard S. Judelson

ABSTRACT Transcription factors of the basic leucine zipper (bZIP) family control development and stress responses in eukaryotes. To date, only one bZIP has been described in any oomycete; oomycetes are members of the stramenopile kingdom. In this study, we describe the identification of 38 bZIPs from the Phytophthora infestans genome. Half contain novel substitutions in the DNA-binding domain at a site that in other eukaryotes is reported to always be Asn. Interspecific comparisons indicated that the novel substitutions (usually Cys, but also Val and Tyr) arose after oomycetes diverged from other stramenopiles. About two-thirds of P. infestans bZIPs show dynamic changes in mRNA levels during the life cycle, with many of the genes being upregulated in sporangia, zoospores, or germinated zoospore cysts. One bZIP with the novel Cys substitution was shown to reside in the nucleus throughout growth and development. Using stable gene silencing, the functions of eight bZIPs with the Cys substitution were tested. All but one were found to play roles in protecting P. infestans from hydrogen peroxide-induced injury, and it is proposed that the novel Cys substitution serves as a redox sensor. A ninth bZIP lacking the novel Asn-to-Cys substitution, but having Cys nearby, was also shown through silencing to contribute to defense against peroxide. Little effect on asexual development, plant pathogenesis, or resistance to osmotic stress was observed in transformants silenced for any of the nine bZIPs.


2020 ◽  
Vol 21 (3) ◽  
pp. 1068
Author(s):  
Tingting Zhu ◽  
Linxuan Li ◽  
Li Feng ◽  
Maozhi Ren

Abscisic acid (ABA) insensitive 5 (ABI5)—a core transcription factor of the ABA signaling pathway—is a basic leucine zipper transcription factor that plays a key role in the regulation of seed germination and early seedling growth. ABI5 interacts with other phytohormone signals to regulate plant growth and development, and stress responses in Arabidopsis, but little is known about the functions of ABI5 in potatoes. Here, we find that StABI5 is involved in the regulation of chloroplast development and photosynthesis. Genetic analysis indicates that StABI5 overexpression transgenic potato lines accelerate dark-induced leaf yellowing and senescence. The chlorophyll contents of overexpressed StABI5 transgenic potato lines were significantly decreased in comparison to those of wild-type Desiree potatoes under dark conditions. Additionally, the RNA-sequencing (RNA-seq) analysis shows that many metabolic processes are changed in overexpressed StABI5 transgenic potatoes. Most of the genes involved in photosynthesis and carbon fixation are significantly down-regulated, especially the chlorophyll a-b binding protein, photosystem I, and photosystem II. These observations indicate that StABI5 negatively regulates chloroplast development and photosynthesis, and provides some insights into the functions of StABI5 in regard to potato growth.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1996
Author(s):  
Anna Collin ◽  
Agata Daszkowska-Golec ◽  
Iwona Szarejko

The core abscisic acid (ABA) signaling pathway consists of receptors, phosphatases, kinases and transcription factors, among them ABA INSENSITIVE 5 (ABI5) and ABRE BINDING FACTORs/ABRE-BINDING PROTEINs (ABFs/AREBs), which belong to the BASIC LEUCINE ZIPPER (bZIP) family and control expression of stress-responsive genes. ABI5 is mostly active in seeds and prevents germination and post-germinative growth under unfavorable conditions. The activity of ABI5 is controlled at transcriptional and protein levels, depending on numerous regulators, including components of other phytohormonal pathways. ABFs/AREBs act redundantly in regulating genes that control physiological processes in response to stress during vegetative growth. In this review, we focus on recent reports regarding ABI5 and ABFs/AREBs functions during abiotic stress responses, which seem to be partially overlapping and not restricted to one developmental stage in Arabidopsis and other species. Moreover, we point out that ABI5 and ABFs/AREBs play a crucial role in the core ABA pathway’s feedback regulation. In this review, we also discuss increased stress tolerance of transgenic plants overexpressing genes encoding ABA-dependent bZIPs. Taken together, we show that ABI5 and ABFs/AREBs are crucial ABA-dependent transcription factors regulating processes essential for plant adaptation to stress at different developmental stages.


Sign in / Sign up

Export Citation Format

Share Document