scholarly journals CORROSION CHARACTERIZATIONS OF CARBON STEEL IN CAI TAU RIVER WATER SYSTEM - VIET NAM

2018 ◽  
Vol 55 (5B) ◽  
pp. 66
Author(s):  
T. K. N. Hoi

        Corrosion problem happens in Cai Tau river water system; however, the mechanism is still questionable, resulting in unsolved ways. Therefore, this study focuses on the corrosion characterizations of carbon steel in Cai Tau river water system to analyze the corrosion mechanism using advanced electrochemical techniques and surface analysis. Electrochemical results indicated that Cl‾ and SO42- ions shows a significant effect on corrosion of carbon steel, resulting in pitting corrosion. Whereas, carbon steel showed passive behavior when it immersed in solution containing CO32- ion. Furthermore, pH strongly affects the corrosion properties of carbon steel. It indicated that corrosion of carbon steel increased with a decrease of pH. Surface analysis was done to identify the surface area of the pitting corrosion of carbon steel. Corrosion rates, pitting and corrosion products were clearly observed and analyzed by optical microscopy and X-ray diffraction. 

2018 ◽  
Vol 55 (5B) ◽  
pp. 94
Author(s):  
D. T. Ngan

Praseodymium 4-hydroxycinnamate compound has been successfully studied as an effective corrosion inhibitor for carbon steel in 0.1 M NaCl solution using electrochemical techniques and surface analysis. The results of electrochemical techniques indicated that there were the decrease of current density and the appearance of protective film on the steel surface evidencing the presence of inhibitor and the effect of Pr(4OHCin)3 compound depending on its concentration in solution. The surface analysis show a confirmation of the protective film formation which is a result of adsorption between the metal and inhibitor components. In addition, inhibition performance of Pr(4OHCin)3 compound is also compared to the inhibition performance of TRACT 109, which has been added to a fresh cooling water system of Ca Mau fertilizer plant.


2021 ◽  
Vol 12 (5) ◽  
pp. 7075-7091

The extract of Fucus spiralis (FS) was tested as a corrosion inhibitor of carbon steel in a 1M HCl medium. The anti-corrosion properties were analyzed by gravimetric and electrochemical techniques such as potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The surface characterization of carbon steel submerged in the optimal solution was carried out using UV-Visible, UV-Vis-NIR, and Optical microscopy analyses. Electrochemical and gravimetric results demonstrated that inhibitory efficiencies increase with increasing inhibitor concentration and the efficiency reaches 87% at a concentration of 0.5 g/L. According to Tafel extrapolated polarisation measurements, the FS also worked as a mixed-type corrosion inhibitor and changed the mechanism of anodic reactions. EIS analysis showed that a depressed capacitive loop dominates the Nyquist plot of impedance and enhances the polarization resistance (Rp) to 161.9 Ω cm2 with a reduction of the double layer capacity (Cdl) of carbon steel to 61.8 μF/cm2. This protection is assured by an adsorption mechanism based on the isothermal Langmuir adsorption model, which positively affects the thermodynamic parameters. UV-Visible, UV-Vis-NIR analyses exhibited that inhibitor decreases the iron oxides like hematite, Magnetite, and Goethite, Maghemite, Lepidocrocite, δ-FeOOH of the metal surface and delays the dissolution of the bare metal of iron to the ferrous ions, notably that optical morphology showed that FS extract decreases the aggressivity of HCl.


2018 ◽  
Vol 7 (1) ◽  
pp. 37 ◽  
Author(s):  
Yuli Panca Asmara

Hydrogen sulfide (H2S) is the most dangerous element which exists in oil and gas reservoir. H2S acidifies water which causes pitting corrosion to carbon steel pipelines. Corrosion reaction will increase fast when it combines with oxygen and carbon dioxide (CO2). Thus, they can significantly reduce service life of transportation pipelines and processing facilities in oil and gas industries. Understanding corrosion mechanism of H2S is crucial to study since many severe deterioration of carbon steels pipelines found in oil and gas industries facilities. To investigate H2S corrosion accurately, it requires studying physical, electrical and chemical properties of the environment. This paper concentrates, especially, on carbon steel corrosion caused by H2S gas. How this gas reacts with carbon steel in oil and gas reservoir is also discussed. This paper also reviews the developments of corrosion prediction software of H2S corrosion. The corrosion mechanism of H2S combined with CO2 gas is also in focused. 


MRS Advances ◽  
2017 ◽  
Vol 2 (62) ◽  
pp. 3909-3915
Author(s):  
Héctor M. Barbosa Cásarez ◽  
Araceli Espinoza Vázquez ◽  
Francisco J. Rodríguez-Gomez

AbstractPhenylcoumarin glucoside (4-PC) is a compound extracted from the plant Hintona latiflora and was studied as inhibitor for AISI 1018 steel corrosion in 3% NaCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques, which may find application as eco-friendly corrosion inhibitors. The 4-PC provides inhibitor properties that protect AISI 1018 low carbon steel against corrosion at low concentrations (5 ppm) obtained by EIS. Polarization studies showed that the inhibitor was of mixed type. The inhibition efficiency by the two electrochemical techniques shows similar results. The inhibitor adsorption was demonstrated to be a combined process (physisorption and chemisorption) according to the Langmuir isotherm.


2015 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Anna Sonya Asoka ◽  
Listiani Artha ◽  
Isdiriayani Nurdin ◽  
Hary Devianto

Carbon steel is commonly used as construction material of processing equipment due to its strength, ease of fabrication, and low cost. Nevertheless, carbon steel is susceptible to corrosion by process fluid, like nitric acid. However, corrosion effect can be reduced by inhibitor addition. Tannin is one of carbon steel corrosion inhibitors in acidic solution. Tannin is an organic compound which has hidroxyl and carboxyl functional groups, decomposed easily, and non-toxic. The aim of this research is to determine the effectiveness of tannin as a corrosion inhibitor for carbon steel in nitric acid solutions. The corrosion rate is determined using the Tafel method, whereas the corrosion mechanism is predicted by cyclic voltammetry. The results showed that tannin is ineffective to inhibit carbon steel corrosion in nitric acid solution. The carbon steel corrosion reaction in nitric acid solution, with or without tannin addition, is reversible, involving single step oxidation-reduction reaction, resulting stable corrosion product, and not forming any passivation.Keywords: carbon steel, corrosion, inhibitor, nitric acid, tannin


2017 ◽  
Vol 64 (6) ◽  
pp. 644-653 ◽  
Author(s):  
A.U. Chaudhry ◽  
Vikas Mittal ◽  
M.I. Hashmi ◽  
Brajendra Mishra

Purpose Inorganic oxide addition can be synergistically beneficial in organic coatings if it can impart anti-corrosion properties and also act as an additive to enhance physical and/or chemical properties. The aim of this study was to evaluate the anti-corrosion benefits of nano nickel zinc ferrite (NZF) in the polymer film. Design/methodology/approach The time-dependent anti-corrosion ability of NZF (0.12-1.0 per cent w/w NZF/binder), applied on API 5L X-80 carbon steel, was characterized by electrochemical techniques such as open circuit potential, electrochemical impedance spectroscopy, linear polarization resistance and potentiodynamic. Characterization of corrosion layer was done by removing coatings after 216 h of immersion in 3.5 per cent w/v NaCl. Optical microscopy, field emission scanning electron microscopy and X-ray diffraction techniques were used to characterize the corroded surface. Findings Corrosion measurements confirm the electrochemical activity by metallic cations on the steel surface during corrosion process which results in improvement of anti-corrosion properties of steel. Moreover, surface techniques show compact corrosion layer coatings and presence of different metallic oxide phases for nanocomposite coatings. Originality/value The suggested protection mechanism was explained by the leaching and precipitation of metallic ion on the corroded surface which in turn slowed down the corrosion activity. Furthermore, improvement in barrier properties of rubber-based coatings was confirmed by the enhanced pore resistance. This work indicates that along with a wide range of applications of NZF, anti-corrosion properties can be taken as an addition.


2014 ◽  
Vol 1025-1026 ◽  
pp. 656-660
Author(s):  
Rita Sundari ◽  
Amy Wahida Mohamad Sa'adan

Corrosion of buried pipelines caused by aging process has taken serious problems. Pitting corrosion in underground pipelines may yield material damage causing great loss of economic value and therefore, this study has emphasized on carbon steel corrosion in three types of soil (laterite, yellow soil and kaolin). Yellow soil solution performed remarkable polarization behavior compared to laterite and kaolin solutions on the basis of Tafel plot. Corrosion potentials of – 0.36V, – 0.47V and – 0.35V were showed by carbon steel corrosion in laterite, yellow soil and kaolin solutions. Yellow soil solution also performed the most corrosive effect on carbon steel due to temperature effect (30o– 90oC). In addition, the corrosion of carbon steel in yellow soil solution posed the lowest enthalpy with regard to thermodynamic effect. This study also showed that the carbon steel corrosion in laterite solution referred to pitting corrosion based on linear adsorption isotherm. This investigation gives valuable information with respect to underground pipelines corrosion.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Bian Li Quan ◽  
Jun Qi Li ◽  
Chao Yi Chen

This paper investigated the effect of additional sulfide and thiosulfate on Q235 carbon steel corrosion in alkaline solutions. Weight loss method, scanning electron microscopy (SEM) equipped with EDS, X-ray photoelectron spectroscopy (XPS), and electrochemical measurements were used in this study to show the corrosion behavior and electrochemistry of Q235 carbon steel. Results indicate that the synergistic corrosion rate of Q235 carbon steel in alkaline solution containing sulfide and thiosulfate is larger than that of sulfide and thiosulfate alone, which could be due to redox reaction of sulfide and thiosulfate. The surface cracks and pitting characteristics of the specimens after corrosion were carefully examined and the corrosion products film is flake grains and defective. The main corrosion products of specimen induced by S2−and S2O32-are FeS, FeS2, Fe3O4, and FeOOH. The present study shows that the corrosion mechanism of S2−and S2O32-is different for the corrosion of Q235 carbon steel.


2015 ◽  
Vol 33 (3-4) ◽  
pp. 151-174 ◽  
Author(s):  
Liang Wei ◽  
Yucheng Zhang ◽  
Xiaolu Pang ◽  
Kewei Gao

AbstractCarbon dioxide (CO2) corrosion at low partial pressure has been widely recognized, but research on supercritical CO2 (SC CO2) corrosion is very limited. By far, investigations on steel corrosion under SC CO2 conditions have mainly focused on the corrosion rate, structure, morphology, and composition of the corrosion scales as well as the electrochemical behaviors. It was found in aqueous SC CO2 environment, that the corrosion rate of carbon steel was very high, and even stainless steels (13Cr and high-alloy CrNi steels) were subjected to some corrosion. Inhibitor could reduce the corrosion rate of carbon steels and stainless steels, but none of the tested inhibitors could reduce the corrosion rate of carbon steel to an acceptable value. Impurities such as O2, SO2, and NO2 and their mixtures in SC CO2 increased the corrosion rate of carbon steel. However, the existing studies so far were very limited on the corrosion mechanism of steels in SC CO2 conditions. Thus, this paper first reviews the finding on the corrosion behaviors of steels under SC CO2 conditions, points out the shortcomings in the present investigations and finally looks forward to the research prospects on SC CO2 corrosion.


Sign in / Sign up

Export Citation Format

Share Document