scholarly journals Impact of Brine Environment on Hardness Property of M30 Concrete with different Material Admixtures

Author(s):  
Karan Babbar, Dr.Neeru Singla, Dr. V.S. Batra
2020 ◽  
Vol 15 (3) ◽  
pp. 44-49
Author(s):  
Ibiyemi A. Idowu ◽  
Olutosin O. Ilori

The study examined the effect of fillers on the mechanical properties of the recycled low density polyethylene composites under weathered condition with a view of managing the generation and disposal of plastic wastes. Discarded pure water sachets and fillers (glass and talc) were sourced and recycled. Recycled low density polyethylene (RLDPE) and preparation of RLDPE/glass, RLDPE/talc and RLDPE/glass/talc composites were carried out using a furnace at compositions of 0 – 40% in steps of 10% by weight. The mixtures were poured into hand-laid mould. The samples produced were exposed to sunlight for eight (8) weeks and their mechanical properties were studied. The results of mechanical tests revealed that tensile strength decreased with increasing filler loading while impact strength and hardness property increased marginally and considerably with increasing filler loading for all the composites respectively. The study concluded that glass and talc were able to reinforce recycled low density polyethylene under weathered condition. Keywords: Recycled Low Density Polyethylene (RLDPE); Fillers; Glass, Talc; Weathering condition; Sunlight; and Mechanical properties; Tensile strength, Impact and hardness


2015 ◽  
Vol 1113 ◽  
pp. 56-61
Author(s):  
Nor Azrina Resali ◽  
Koay Mei Hyie ◽  
M.N. Berhan ◽  
C.M. Mardziah

In this research, heat treatment is the final finishing process applied on nanocrystalline CoNiFe to improve microstructure for good hardness property. Nanocrystalline CoNiFe has been synthesized using the electrodeposition method. This study investigated the effect of heat treatment at 500°C, 600°C, 700°C and 800°C on electrodeposited nanocrystalline CoNiFe. The heat treatment process was performed in the tube furnace with flowing Argon gas. By changing the heat treatment temperature, physical properties such as phase and crystallographic structure, surface morphology, grain size and hardness of nanocrystalline CoNiFe was studied. The nanocrystalline CoNiFe phase revealed the Face Centered Cubic (FCC) and Body Centered Cubic (BCC) crystal structure. FESEM micrographs showed that the grain sizes of the coatings were in the range of 78.76 nm to 132 nm. Dendrite shape was found in the microstructure of nanocrystalline CoNiFe. The nanocrystalline CoNiFe prepared in heat treatment temperature of 700°C, achieved the highest hardness of 449 HVN. The surface roughness of nanocrystalline CoNiFe heated at 700°C was found to be smaller than other temperatures.


2018 ◽  
Vol 5 (8) ◽  
pp. 086504 ◽  
Author(s):  
Kunlun Chen ◽  
Peng Song ◽  
Chen Hua ◽  
Ying Zhou ◽  
Taihong Huang ◽  
...  

2016 ◽  
Vol 718 ◽  
pp. 40-44
Author(s):  
Sujirat Tepsila ◽  
Amnart Suksri

Silicone rubber room temperature vulcanization (RTV) is widely used as an insulator. This paper aims to improve the electrical and mechanical properties of RTV with organic filler from golden apple snail shells. The processed golden apple snail shells have the particle size of 75 μm. Specimen were made from silicone rubber with an addition of organic filler and inorganic filler for tested under ASTM D638-2a standard. The filler ratio was varying from 0 to 50% by weight with incremental of 5%. Experimental results showed that, there were good agreement in threshold of electrical and mechanical properties. RTV with the organic filler ratio of 40% out performed the inorganic filler in electrical aspect. Tensile strength of RTV was found to be increased when 5% addition of organic filler is used and decreases steadily as this filler is increased. The amount of filler has greater contribution to the hardness property of the RTV and it may become brittle when it is used in excessive amount.


2013 ◽  
Vol 701 ◽  
pp. 197-201 ◽  
Author(s):  
Hendra Suherman ◽  
Jaafar Sahari ◽  
Abu Bakar Sulong

This study investigates the effect of carbon nanotubes (CNTs) as conductive fillers and epoxy resin as matrix on the electrical conductivity and hardness property. The different CNTs weight percentage (0 ~ 10 wt.%) were added into the epoxy resin. The dispersion of CNTs in epoxy resin was conducted by high speed mixer through mechanical shearing mechanism. The mixture of CNTs/epoxy was poured into the mold and compression molding was conducted for fabrication of CNTs/epoxy nanocomposites. The electrical conductivity and hardness of CNTs/epoxy nanocomposites by several of CNTs loading concentration were measured by the four point probe and dynamic ultra micro hardness tester. Agglomeration of CNTs in epoxy matrix was observed on fractured surface by scanning electron microscopic. Non conductive epoxy polymer becomes conductor as addition of CNTs. Electrical conductivity of CNTs/epoxy nanocomposites were increased with increasing of CNTs loading concentration. Hardness property of CNTs/epoxy nanocomposites ware reached the highest value at 5 wt.%, and then it was decreased.


Author(s):  
Philippe P. Darcis ◽  
Israel Marines-Garcia ◽  
Stephen J. Hudak ◽  
Mariano Armengol ◽  
Hector M. Quintanilla

The current work aims to point out the influence of sour brine environment on the fatigue resistance of welded SMLS (seamless) steel pipe used for design and fabrication of risers for oil and gas development. A C-Mn steel X65 pipe 10.75″ (273.1 mm) outside diameter (OD) and 25.4 mm wall thickness (WT) was chosen for this program. The Welding Procedure designed for girth welds manufacturing involved the use of Lincoln STT-GMAW™ process for the root pass and SAW process with twin wire configuration for the fill and cap passes. This welding procedure presents a special post-weld finishing treatment, which consist in flapping the inner and outer weld overfills to produce a flush profile between weld metal and outer/inner pipe surfaces. The experimental approach focused on quantifying the effect of H2S using a sour brine environment. For this purpose, intermediate-scale fatigue data in the sour brine environment, using full thickness’ strip specimens extracted from the welded SMLS (seamless) pipe, have been generated. Intermediate-scale fatigue tests in air have also been obtained to provide a baseline for comparison with the sour brine data. Those results have been compared with full-scale fatigue tests in air environment. Finally, results were statistically analyzed to determine which standard fatigue design curves best represent the measured S-N fatigue endurance in air and sour brine environments. Results were also compared with available literature and results on other seamless’ welded pipe of the same API 5L, Grade X65 steel in comparable environments.


Author(s):  
Xiao Yun ◽  
Sam Brooks ◽  
Yan Cheng ◽  
Alastair Hales ◽  
Edward Lucas ◽  
...  

2011 ◽  
Vol 364 ◽  
pp. 450-454 ◽  
Author(s):  
Ahmad Zahirani Ahmad Azhar ◽  
Mohamad Hasmaliza ◽  
Manimaran Ratnam ◽  
Zainal Arifin Ahmad

The mechanical properties and microstructure of zirconia-toughened-alumina ceramic composite doped with nanoparticle of MgO is investigated. The nanoMgO weight percent was varied from 0.3 wt % to 1.3 wt %. Each batch of composition was mixed using ultrasonic cleaner and mechanical stirrer, uniaxially pressed and sintered at 1600 °C for 4 h in pressureless conditions. Analysis of bulk density, Vickers hardness and microstructural observation has been carried out. Results of Vickers hardness increased linearly with addition of more nanoMgO until a certain composition. Maximum Vickers hardness obtained was 1740HV with 1.1 wt % MgO. Furthermore, microstructural observations show that the Al2O3 grain size depends on the particle size of MgO, and is directly related to its hardness property.


Sign in / Sign up

Export Citation Format

Share Document