scholarly journals Philogenetic Analysis of ADAMTS-4 and ADAMTS-5 Structures

2020 ◽  
pp. 5-11
Author(s):  
Anastasia Korchagina ◽  
Pavel Krylov

ADAMTS-4 and -5 are aggrecanases that are involved in the development of osteoarthrosis by breaking aggrecan at various binding sites, of which cleavage in the Glu373-Ala374 bond plays the most important role in pathogenesis. Therefore, studying them is an urgent task to this day. Now, the structural features of these enzymes have already been studied, however, the influence of evolutionary development on their functions and enzymatic activity is not quite clear. In the framework of this research in silico studies have been conducted. They consist in the construction of phylogenetic trees by the maximum likelihood method in MEGA X program, the establishment of changes in the structures that occurred during evolution, and their possible effect on enzymatic activity. In addition, the organism most suitable for experimental studies has been determined. In this research, to analyze evolutionary changes, we have studied the sequences of organisms from different families: Salmon, Guinea fowl, Frog, Python, Rabbit, Leopard, Gorilla, Man. The lengths of these sequences are approximately equal; when aligning, the structures do not differ much. When studying the trees constructed from these sequences, it has been found that their structure is quite different only at the beginning, in the area of the signal surface and prodomain, while the rest of the changes are insignificant. The authors have also carried out the analysis of phylogenetic trees to determine an organism that is most like the human structure and therefore most suitable for in vivo studies. The following structures have been investigated: Bull, Camel, Pig, Donkey, Rabbit, Rat, Mouse, and Man. The rabbit has the most similar structure and therefore is more suitable for experimental studies.

2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


Author(s):  
Aloisio Cunha de Carvalho ◽  
Leoni Villano Bonamin

Background: Several reviews about phytotherapy and homeopathy have been published in the last years, including Viscum album (VA.L). VA is a parasite plant whose extract has anti-cancer proprieties and is used alone or in combination with conventional chemotherapy. Methods: We performed a systematic review about the in vivo and in vitro models described in the literature, including veterinary clinical trials. The literature was consulted from Pubmed database. Results: There are several kinds of pharmaceutical preparations about VA and their active principles used in experimental studies, lectin being frequently studied (alone or as an extract compound). More than 50% of available literature about VA is related to the lectin effects. On the other hand, the effects of viscotoxins are less studied. Among the in vivo experimental studies about VA and its compounds, the B16 murine melanoma is the most used model, followed by Ehrlich, Walker and Dalton tumors. The results point to the apoptotic effects, metastasis control and tumor regression. Some veterinary clinical studies about the use of VA in the treatment of sarcoid, fibrosarcoma and neuroblastoma are quoted in literature too, with interesting results. Considering the in vitro models, our review revealed that NALM6 leukemia cells, B16 melanoma and NC1-H460 lung carcinoma were the most studied tumor models, apoptosis signals being the most important findings. Only one study verified immunoglobulin and interleukin production. All consulted papers were related to phytotherapy preparations only. Conclusions: Although the literature about the anti-cancer activity of VA extract and its lectins is enough, there is a marked lack of information about viscotoxin activities and about the effects of homeopathic preparations of this plant on animal tumors and on in vitro cultivated tumor cells.


2021 ◽  
Vol 16 (12) ◽  
pp. 119-124
Author(s):  
S. Syed Chandini ◽  
Sairam Mantri

Thrombomodulin (TM) and matrix metalloproteinase (MMPs) are the major factors that are responsible for lung cancer. Hence, the identification of novel compounds inhibiting TM and MMPs is the challenging task for the scientists. Even though synthetic drugs were developed, their toxicity and offtarget limit their usage. The current study aims to investigate the molecular simulations for bacterial derived stearic acid to estimate the in silico anticancer activity against TM and MMPs protein as target compounds and the findings were correlated with the standard drug vorinostat. Using Lamarckian genetic algorithm, the TM and MMPs were energy minimized and docked with stearic acid and vorinostat using auto dock 4.2 and visualized in PyMol software. Protein and ligand binding analysis revealed that stearic acid interacts with the amino acids of MMPs residues of PHE83, SER212, ALA213 and ASN214. It interacts with the TMs with two amino acid residues i.e. CYS407 and GLU408. Hence, compared to vorinostat, stearic acid shows a higher binding affinity towards MMPs and slightly lower affinity towards TM proteinase. We conclude that the computational analysis of ligand binding interaction of stearic acid suggests that it could be a potential inhibitor of matrix metallo proteinase and is effective against thrombomodulin and can be considered as an anticancer agent by in vivo studies.


2019 ◽  
Vol 5 (4) ◽  
pp. 353-377 ◽  
Author(s):  
Helinor J. Johnston ◽  
William Mueller ◽  
Susanne Steinle ◽  
Sotiris Vardoulakis ◽  
Kraichat Tantrakarnapa ◽  
...  

Abstract Purpose of Review A large body of epidemiological evidence demonstrates that exposure to particulate matter (PM) is associated with increased morbidity and mortality. Many epidemiology studies have investigated the health effects of PM in Europe and North America and focussed on traffic derived PM. However, elevated levels of PM are a global problem and the impacts of other sources of PM on health should be assessed. Biomass burning can increase PM levels in urban and rural indoor and outdoor environments in developed and developing countries. We aim to identify whether the health effects of traffic and biomass burning derived PM are similar by performing a narrative literature review. We focus on Thailand as haze episodes from agricultural biomass burning can substantially increase PM levels. Recent Findings Existing epidemiology, in vitro and in vivo studies suggest that biomass burning derived PM elicits toxicity via stimulation of oxidative stress, inflammation and genotoxicity. Thus, it is likely to cause similar adverse health outcomes to traffic PM, which causes toxicity via similar mechanisms. However, there is conflicting evidence regarding whether traffic or biomass burning derived PM is most hazardous. Also, there is evidence that PM released from different biomass sources varies in its toxic potency. Summary We recommend that epidemiology studies are performed in Thailand to better understand the impacts of PM emitted from specific biomass sources (e.g. agricultural burning). Further, experimental studies should assess the toxicity of PM emitted from more diverse biomass sources. This will fill knowledge gaps and inform evidence-based interventions that protect human health.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Saiedeh Razi Soofiyani ◽  
Kamran Hosseini ◽  
Haleh Forouhandeh ◽  
Tohid Ghasemnejad ◽  
Vahideh Tarhriz ◽  
...  

Lymphoma is a name for malignant diseases of the lymphatic system including Hodgkin’s lymphoma and non-Hodgkin’s lymphoma. Although several approaches are used for the treatment of these diseases, some of them are not successful and have serious adverse effects. Therefore, other effective treatment methods might be interesting. Studies have indicated that plant ingredients play a key role in treating several diseases. Some plants have already shown a potential therapeutic effect on many malignant diseases. Quercetin is a flavonoid found in different plants and could be useful in the treatment of different malignant diseases. Quercetin has its antimalignant effects through targeting main survival pathways activated in tumor cells. In vitro/in vivo experimental studies have demonstrated that quercetin possesses a cytotoxic effect on lymphoid cancer cells. Regardless of the optimum results that have been obtained from both in vitro/in vivo studies, few clinical studies have analyzed the antitumor effects of quercetin in lymphoid cancers. Thus, it seems that more clinical studies should introduce quercetin as a therapeutic, alone or in combination with other chemotherapy agents. Here, in this study, we reviewed the anticancer effects of quercetin and highlighted the potential therapeutic effects of quercetin in various types of lymphoma.


Author(s):  
Elga Lopes Cunha ◽  
Simone Santos Oliveira Barros ◽  
Michele Cezimbra Perim ◽  
Klismam Marques dos Santos ◽  
Maria Laura Martins ◽  
...  

ABSTRACT The Guazuma ulmifolia Lamark (Malvaceae) is a non-endemic plant, popularly known as mutamba. Its leaves and roots are used in home remedies against dysentery and diarrhea, in the treatment of prostate, as a uterine stimulant and other diseases. Due to the characteristics presented and the growing interest in this species, a systematic review was carried out on the possible pharmacological and toxicological effects of Guazuma ulmifolia Lamark. As active compounds, the articles cited the presence of flavonoids, saponins, alkaloids, tannins, phenolic compounds and steroids in different parts of the plant and extracted with different solvents. Regarding the experimental studies, no articles were found with clinical test, and only 4 in vivo studies. About the pharmacological effects we can mention activity against leishmaniasis, hypoglycemic, anti-inflammatory, anticholinesterase, anti-obesity, antiseptic, cicatrizant and anthelmintic. The registered toxicological tests were directed against lineages of cancer cells, proving effective, however, there is a need for studies to attest the safety of G. ulmifolia use by the population. Therefore, it is imperative to carry out further studies to ensure the use of this plant, to know doses and form of indication, as well as clinical studies in order to guarantee a correct therapy. Keywords: Guazuma ulmifolia, toxicity, medicinal plants.    


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2351
Author(s):  
Sameh S. Elhady ◽  
Fadia S. Youssef ◽  
Abdulrahman M. Alahdal ◽  
Diena M. Almasri ◽  
Mohamed L. Ashour

Buddleia indica Lam. is an ornamental evergreen shrub with few reports concerning its phytoconstituents and biological activities. Herein, the antihyperglycaemic activity of B. indica leaves methanol extract (BIT) was evaluated for the first time using in vitro and in vivo studies. Molecular modelling was performed for its major phytoconstituents that were further subjected to ADME/TOPAKT (absorption, distribution, metabolism, excretion and toxicity) prediction. BIT revealed considerable reduction in glucose concentration by 9.93% at 50 μg/mL using 3T3-L1 adipocyte culture. It displayed substantial inhibition versus α-glucosidase and α-amylase with IC50 205.2 and 385.06 μg/mL, respectively. In vivo antihyperglycaemic activity of BIT and the ethyl acetate fraction (BIE) was performed using streptozotocin-induced diabetes in rat model. BIT and BIE effectively ameliorate oxidative stress markers in addition to reducing serum blood glucose by 56.08 and 54.00%, respectively, and are associated with a substantial increase in serum insulin by 4.1 and 12.7%, respectively. This can be attributed to its richness with polyphenolic compounds comprising flavonoids, phenolic acids, phenyl propanoids and iridoids. Molecular docking showed that verbascoside and kaempferol displayed the highest fitting within human α-amylase (HA) and human α-glucosidase (HG) active sites, respectively. They showed reasonable pharmacokinetic, pharmacodynamic and toxicity properties, as revealed by ADME/TOPKAT study.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6633
Author(s):  
Faisal Usman ◽  
Hamid Saeed Shah ◽  
Sumera Zaib ◽  
Sirikhwan Manee ◽  
Jahanzeb Mudassir ◽  
...  

Type 2 diabetes mellitus has been a major health issue with increasing morbidity and mortality due to macrovascular and microvascular complications. The urgent need for improved methods to control hyperglycemic complications reiterates the development of innovative preventive and therapeutic treatment strategies. In this perspective, xanthone compounds in the pericarp of the mangosteen fruit, especially α-mangostin (MGN), have been recognized to restore damaged pancreatic β-cells for optimal insulin release. Therefore, taking advantage of the robust use of nanotechnology for targeted drug delivery, we herein report the preparation of MGN loaded nanosponges for anti-diabetic therapeutic applications. The nanosponges were prepared by quasi-emulsion solvent evaporation method. Physico-chemical characterization of formulated nanosponges with satisfactory outcomes was performed with Fourier transform infra-red (FTIR) spectroscopy, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Zeta potential, hydrodynamic diameter, entrapment efficiency, drug release properties, and stability studies at stress conditions were also tested. Molecular docking analysis revealed significant interactions of α-glucosidase and MGN in a protein-ligand complex. The maximum inhibition by nanosponges against α-glucosidase was observed to be 0.9352 ± 0.0856 µM, 3.11-fold higher than acarbose. In vivo studies were conducted on diabetic rats and plasma glucose levels were estimated by HPLC. Collectively, our findings suggest that MGN-loaded nanosponges may be beneficial in the treatment of diabetes since they prolong the antidiabetic response in plasma and improve patient compliance by slowly releasing MGN and requiring less frequent doses, respectively.


2018 ◽  
Vol 16 (1) ◽  
pp. 82-92 ◽  
Author(s):  
Ahmet Özdemir ◽  
Belgin Sever ◽  
Mehlika Dilek Altıntop

Background: Azoles are commonly used in the treatment and prevention of fungal infections. They suppress fungal growth by acting on the heme group of lanosterol 14α-demethylase enzyme (CYP51), thus blocking the biosynthesis of ergosterol. </P><P> Objectives: Due to the importance of pyrazolines in the field of antifungal drug design, we aimed to design and synthesize new pyrazoline-based anticandidal agents. Methods: New pyrazoline derivatives were synthesized via the reaction of 1-(chloroacetyl)-3-(2- thienyl)-5-(1,3-benzodioxol-5-yl)-2-pyrazoline with aryl thiols. These compounds were evaluated for their in vitro antifungal effects on Candida species. Docking studies were performed to predict the affinity of the most effective anticandidal agents to substrate binding site of CYP51. Furthermore, MTT assay was performed to determine the cytotoxic effects of the compounds on NIH/3T3 mouse embryonic fibroblast cell line. A computational study for the prediction of ADME properties of all compounds was also carried out. Results: Compounds 5, 8, 10 and 12 were found as the most potent anticandidal agents against Candida albicans and Candida glabrata in this series with the same MIC values of ketoconazole and they also exhibited low toxicity against NIH/3T3 cells. Docking results indicated that all these compounds showed good binding affinity into the active site of CYP51. In particular, chloro substituted compounds 8 and 12 bind to CYP51 through direct coordination with the heme group. According to in silico studies, compound 8 only violated one parameter of Lipinski’s rule of five, making it a potential orally bioavailable agent. Conclusion: Compound 8 was defined as a promising candidate for further in vitro and in vivo studies.


Sign in / Sign up

Export Citation Format

Share Document