scholarly journals How Harmful Is Particulate Matter Emitted from Biomass Burning? A Thailand Perspective

2019 ◽  
Vol 5 (4) ◽  
pp. 353-377 ◽  
Author(s):  
Helinor J. Johnston ◽  
William Mueller ◽  
Susanne Steinle ◽  
Sotiris Vardoulakis ◽  
Kraichat Tantrakarnapa ◽  
...  

Abstract Purpose of Review A large body of epidemiological evidence demonstrates that exposure to particulate matter (PM) is associated with increased morbidity and mortality. Many epidemiology studies have investigated the health effects of PM in Europe and North America and focussed on traffic derived PM. However, elevated levels of PM are a global problem and the impacts of other sources of PM on health should be assessed. Biomass burning can increase PM levels in urban and rural indoor and outdoor environments in developed and developing countries. We aim to identify whether the health effects of traffic and biomass burning derived PM are similar by performing a narrative literature review. We focus on Thailand as haze episodes from agricultural biomass burning can substantially increase PM levels. Recent Findings Existing epidemiology, in vitro and in vivo studies suggest that biomass burning derived PM elicits toxicity via stimulation of oxidative stress, inflammation and genotoxicity. Thus, it is likely to cause similar adverse health outcomes to traffic PM, which causes toxicity via similar mechanisms. However, there is conflicting evidence regarding whether traffic or biomass burning derived PM is most hazardous. Also, there is evidence that PM released from different biomass sources varies in its toxic potency. Summary We recommend that epidemiology studies are performed in Thailand to better understand the impacts of PM emitted from specific biomass sources (e.g. agricultural burning). Further, experimental studies should assess the toxicity of PM emitted from more diverse biomass sources. This will fill knowledge gaps and inform evidence-based interventions that protect human health.

Author(s):  
Tanwi Trushna ◽  
Amit K. Tripathi ◽  
Sindhuprava Rana ◽  
Rajnarayan R. Tiwari

: Air pollution, especially particulate matter pollution adversely affects human health. A growing pool of evidence has emerged which underscores the potential of individual-level nutritional interventions in attenuating the adverse health impact of exposure to PM2.5. Although controlling emission and reducing the overall levels of air pollution remains the ultimate objective globally, the sustainable achievement of such a target and thus consequent protection of human health will require a substantial amount of time and concerted efforts worldwide. In the meantime, smaller-scale individual-level interventions that can counter the inflammatory or oxidative stress effects triggered by exposure to particulate matter may be utilized to ameliorate the health effects of PM2.5 pollution. One such intervention is incorporation of nutraceuticals in the diet. Here, we present a review of the evidence generated from various in vitro, in vivo and human studies regarding the effects of different anti-inflammatory and antioxidant nutraceuticals in ameliorating the health effects of particulate matter air pollution. The studies discussed in this review suggest that these nutraceuticals when consumed as a part of the diet, or as additional supplementation, can potentially negate the cellular level adverse effects of exposure to particulate pollution. The potential benefits of adopting a non-pharmacological diet-based approach to air pollution-induced disease management have also been discussed. We argue that before a nutraceuticals-based approach can be used for widespread public adoption, further research, especially human clinical trials, is essential to confirm the beneficial action of relevant nutraceuticals and to explore the safe limits of human supplementation and the risk of side effects. Future research should focus on systematically translating bench-based knowledge regarding nutraceuticals gained from in-vitro and in-vivo studies into clinically usable nutritional guidelines.


Author(s):  
Aloisio Cunha de Carvalho ◽  
Leoni Villano Bonamin

Background: Several reviews about phytotherapy and homeopathy have been published in the last years, including Viscum album (VA.L). VA is a parasite plant whose extract has anti-cancer proprieties and is used alone or in combination with conventional chemotherapy. Methods: We performed a systematic review about the in vivo and in vitro models described in the literature, including veterinary clinical trials. The literature was consulted from Pubmed database. Results: There are several kinds of pharmaceutical preparations about VA and their active principles used in experimental studies, lectin being frequently studied (alone or as an extract compound). More than 50% of available literature about VA is related to the lectin effects. On the other hand, the effects of viscotoxins are less studied. Among the in vivo experimental studies about VA and its compounds, the B16 murine melanoma is the most used model, followed by Ehrlich, Walker and Dalton tumors. The results point to the apoptotic effects, metastasis control and tumor regression. Some veterinary clinical studies about the use of VA in the treatment of sarcoid, fibrosarcoma and neuroblastoma are quoted in literature too, with interesting results. Considering the in vitro models, our review revealed that NALM6 leukemia cells, B16 melanoma and NC1-H460 lung carcinoma were the most studied tumor models, apoptosis signals being the most important findings. Only one study verified immunoglobulin and interleukin production. All consulted papers were related to phytotherapy preparations only. Conclusions: Although the literature about the anti-cancer activity of VA extract and its lectins is enough, there is a marked lack of information about viscotoxin activities and about the effects of homeopathic preparations of this plant on animal tumors and on in vitro cultivated tumor cells.


2008 ◽  
Vol 20 (3) ◽  
pp. 319-337 ◽  
Author(s):  
Konrad Ludwig Maier ◽  
Francesca Alessandrini ◽  
Ingrid Beck-Speier ◽  
Thomas Philipp Josef Hofer ◽  
Silvia Diabaté ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Saiedeh Razi Soofiyani ◽  
Kamran Hosseini ◽  
Haleh Forouhandeh ◽  
Tohid Ghasemnejad ◽  
Vahideh Tarhriz ◽  
...  

Lymphoma is a name for malignant diseases of the lymphatic system including Hodgkin’s lymphoma and non-Hodgkin’s lymphoma. Although several approaches are used for the treatment of these diseases, some of them are not successful and have serious adverse effects. Therefore, other effective treatment methods might be interesting. Studies have indicated that plant ingredients play a key role in treating several diseases. Some plants have already shown a potential therapeutic effect on many malignant diseases. Quercetin is a flavonoid found in different plants and could be useful in the treatment of different malignant diseases. Quercetin has its antimalignant effects through targeting main survival pathways activated in tumor cells. In vitro/in vivo experimental studies have demonstrated that quercetin possesses a cytotoxic effect on lymphoid cancer cells. Regardless of the optimum results that have been obtained from both in vitro/in vivo studies, few clinical studies have analyzed the antitumor effects of quercetin in lymphoid cancers. Thus, it seems that more clinical studies should introduce quercetin as a therapeutic, alone or in combination with other chemotherapy agents. Here, in this study, we reviewed the anticancer effects of quercetin and highlighted the potential therapeutic effects of quercetin in various types of lymphoma.


2019 ◽  
Vol 20 (19) ◽  
pp. 4772 ◽  
Author(s):  
Johan Øvrevik

Background and Objectives: The oxidative potential (OP) of particulate matter (PM) in cell-free/abiotic systems have been suggested as a possible measure of their biological reactivity and a relevant exposure metric for ambient air PM in epidemiological studies. The present review examined whether the OP of particles correlate with their biological effects, to determine the relevance of these cell-free assays as predictors of particle toxicity. Methods: PubMed, Google Scholar and Web of Science databases were searched to identify relevant studies published up to May 2019. The main inclusion criteria used for the selection of studies were that they should contain (1) multiple PM types or samples, (2) assessment of oxidative potential in cell-free systems and (3) assessment of biological effects in cells, animals or humans. Results: In total, 50 independent studies were identified assessing both OP and biological effects of ambient air PM or combustion particles such as diesel exhaust and wood smoke particles: 32 in vitro or in vivo studies exploring effects in cells or animals, and 18 clinical or epidemiological studies exploring effects in humans. Of these, 29 studies assessed the association between OP and biological effects by statistical analysis: 10 studies reported that at least one OP measure was statistically significantly associated with all endpoints examined, 12 studies reported that at least one OP measure was significantly associated with at least one effect outcome, while seven studies reported no significant correlation/association between any OP measures and any biological effects. The overall assessment revealed considerable variability in reported association between individual OP assays and specific outcomes, but evidence of positive association between intracellular ROS, oxidative damage and antioxidant response in vitro, and between OP assessed by the dithiothreitol (DDT) assay and asthma/wheeze in humans. There was little support for consistent association between OP and any other outcome assessed, either due to repeated lack of statistical association, variability in reported findings or limited numbers of available studies. Conclusions: Current assays for OP in cell-free/abiotic systems appear to have limited value in predicting PM toxicity. Clarifying the underlying causes may be important for further advancement in the field.


2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
Abderrahim Nemmar ◽  
Jørn A. Holme ◽  
Irma Rosas ◽  
Per E. Schwarze ◽  
Ernesto Alfaro-Moreno

Epidemiological and clinical studies have linked exposure to particulate matter (PM) to adverse health effects, which may be registered as increased mortality and morbidity from various cardiopulmonary diseases. Despite the evidence relating PM to health effects, the physiological, cellular, and molecular mechanisms causing such effects are still not fully characterized. Two main approaches are used to elucidate the mechanisms of toxicity. One is the use ofin vivoexperimental models, where various effects of PM on respiratory, cardiovascular, and nervous systems can be evaluated. To more closely examine the molecular and cellular mechanisms behind the different physiological effects, the use of variousin vitromodels has proven to be valuable. In the present review, we discuss the current advances on the toxicology of particulate matter and nanoparticles based on these techniques.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5645
Author(s):  
Antonella Aresta ◽  
Stefania De De Santis ◽  
Alessia Carocci ◽  
Alexia Barbarossa ◽  
Andrea Ragusa ◽  
...  

Lipids from milk are important nutritional components, although their health effects, especially for animal milks, are still questioned. Four types of commercial milks, two semi-skimmed animal milks (bovine and goat) and two vegetable ones (soy and rice), along with their total and free lipid fractions recovered by sequential centrifugation or by ethyl acetate extraction, respectively, have been analyzed. A higher antioxidant ability, reported as Trolox equivalent antioxidant capacity, was found for all raw milks compared to that of rice. This trend was confirmed, except for soy milk, as ROS reduction in Caco-2 cells. The free lipid fraction was shown to have the highest antioxidant potential in both chemical and biological tests. Moreover, goat and soy raw milks positively regulated Caco-2 cell viability after an inflammatory stimulus. This effect was lost when their total lipid fraction was tested. Finally, only the free lipid fraction from rice milk preserved the Caco-2 viability after LPS stimulation. Our data demonstrated that the lipid profile of each milk, characterized by GC-MS analysis, could contribute to dictate its biological effects, and, although additional in vitro and in vivo studies are needed, they could support the literature re-evaluating the health effects of animal-based versus plant-based milks in the intestinal cellular model.


2020 ◽  
Vol 9 (2) ◽  
pp. 346 ◽  
Author(s):  
Teresa Caro-Ordieres ◽  
Gema Marín-Royo ◽  
Lucas Opazo-Ríos ◽  
Luna Jiménez-Castilla ◽  
Juan Antonio Moreno ◽  
...  

Diabetes mellitus (DM), and its micro and macrovascular complications, is one of the biggest challenges for world public health. Despite overall improvement in prevention, diagnosis and treatment, its incidence is expected to continue increasing over the next years. Nowadays, finding therapies to prevent or retard the progression of diabetic complications remains an unmet need due to the complexity of mechanisms involved, which include inflammation, oxidative stress and angiogenesis, among others. Flavonoids are natural antioxidant compounds that have been shown to possess anti-diabetic properties. Moreover, increasing scientific evidence has demonstrated their potential anti-inflammatory and anti-oxidant effects. Consequently, the use of these compounds as anti-diabetic drugs has generated growing interest, as is reflected in the numerous in vitro and in vivo studies related to this field. Therefore, the aim of this review is to assess the recent pre-clinical and clinical research about the potential effect of flavonoids in the amelioration of diabetic complications. In brief, we provide updated information concerning the discrepancy between the numerous experimental studies supporting the efficacy of flavonoids on diabetic complications and the lack of appropriate and well-designed clinical trials. Due to the well-described beneficial effects on different mechanisms involved in diabetic complications, the excellent tolerability and low cost, future randomized controlled studies with compounds that have adequate bioavailability should be evaluated as add-on therapy on well-established anti-diabetic drugs.


2016 ◽  
Vol 23 (1) ◽  
pp. 82-94 ◽  
Author(s):  
Alexander Tang ◽  
Gary Thickbroom ◽  
Jennifer Rodger

Since the development of transcranial magnetic stimulation (TMS) in the early 1980s, a range of repetitive TMS (rTMS) protocols are now available to modulate neuronal plasticity in clinical and non-clinical populations. However, despite the wide application of rTMS in humans, the mechanisms underlying rTMS-induced plasticity remain uncertain. Animal and in vitro models provide an adjunct method of investigating potential synaptic and non-synaptic mechanisms of rTMS-induced plasticity. This review summarizes in vitro experimental studies, in vivo studies with intact rodents, and preclinical models of selected neurological disorders—Parkinson’s disease, depression, and stroke. We suggest that these basic research findings can contribute to the understanding of how rTMS-induced plasticity can be modulated, including novel mechanisms such as neuroprotection and neurogenesis that have significant therapeutic potential.


Sign in / Sign up

Export Citation Format

Share Document