The Role of Extracellular Vesicles of Various Origins in the Development of Preeclampsia

2021 ◽  
Vol 76 (3) ◽  
pp. 237-243
Author(s):  
Mariya G. Nikolaeva ◽  
Vasilisa U. Тerekhina ◽  
Alexey V. Kudinov ◽  
Andrey P. Momot

Pre-eclampsia is a clinically unfavorable pregnancy outcome that determines the main indicators of maternal and/or perinatal morbidity and mortality. According to modern concepts, the placenta plays a central role in the development of PE, while intercellular and intervesicular communications involving extracellular vesicles (EVs, extracellular vesicles) initiate a cascade of various biological effects, determining the mechanisms of ontogenesis of the gestational process in normal and pathological conditions. Achievements in studies of extracellular vesicles (EVs, extracellular vesicles) are of particular interest both to clinicians and to researchers studying the pathophysiology of gestational complications. Extracellular vesicles (EVs) in preeclampsia are produced both by scintiotrophoblast and the maternal body - blood cells (platelets, red blood cells, white blood cells) and the cardiovascular (vascular endothelium, smooth muscle) system. Changes in the concentration of these EVs can contribute to the implementation of preeclampsia, enhancing the pro-inflammatory and procoagulant states inherent in the gestation process. This review focuses on freely available information on the possible interactions between placental and maternal EVs. Understanding the contribution of EVs to the development of preeclampsia can help to deepen knowledge about the pathogenesis of this pathology and determine the diagnostic and prognostic significance of extracellular vesicles as biomarkers.

2021 ◽  
Vol 22 (13) ◽  
pp. 7091
Author(s):  
Timothée Fettrelet ◽  
Lea Gigon ◽  
Alexander Karaulov ◽  
Shida Yousefi ◽  
Hans-Uwe Simon

Eosinophils are specialized white blood cells, which are involved in the pathology of diverse allergic and nonallergic inflammatory diseases. Eosinophils are traditionally known as cytotoxic effector cells but have been suggested to additionally play a role in immunomodulation and maintenance of homeostasis. The exact role of these granule-containing leukocytes in health and diseases is still a matter of debate. Degranulation is one of the key effector functions of eosinophils in response to diverse stimuli. The different degranulation patterns occurring in eosinophils (piecemeal degranulation, exocytosis and cytolysis) have been extensively studied in the last few years. However, the exact mechanism of the diverse degranulation types remains unknown and is still under investigation. In this review, we focus on recent findings and highlight the diversity of stimulation and methods used to evaluate eosinophil degranulation.


Neurosurgery ◽  
1986 ◽  
Vol 19 (1) ◽  
pp. 111-113 ◽  
Author(s):  
David J. Gower ◽  
Kerry Crone ◽  
Eben Alexander ◽  
David L. Kelly

Abstract Infection of cerebrospinal fluid shunts with Candida albicans is reported in two patients. Scanning electron microscopy in one case demonstrates the relationship of the Candida hyphae to the white blood cells and to silicone plastic. A review of 10 previously reported cases of Candida shunt infection indicates that the infection usually follows a major bacterial infection or direct contamination or occurs spontaneously, Previous therapy has usually involved removal of the shunt, and the role of parenteral antifungal therapy is still unclear. Overall mortality to date is 25%.


Author(s):  
Florian Puhm ◽  
Eric Boilard ◽  
Kellie R. Machlus

Extracellular vesicles (EVs) are a means of cell-to-cell communication and can facilitate the exchange of a broad array of molecules between adjacent or distant cells. Platelets are anucleate cells derived from megakaryocytes and are primarily known for their role in maintaining hemostasis and vascular integrity. Upon activation by a variety of agonists, platelets readily generate EVs, which were initially identified as procoagulant particles. However, as both platelets and their EVs are abundant in blood, the role of platelet EVs in hemostasis may be redundant. Moreover, findings have challenged the significance of platelet-derived EVs in coagulation. Looking beyond hemostasis, platelet EV cargo is incredibly diverse and can include lipids, proteins, nucleic acids, and organelles involved in numerous other biological processes. Furthermore, while platelets cannot cross tissue barriers, their EVs can enter lymph, bone marrow, and synovial fluid. This allows for the transfer of platelet-derived content to cellular recipients and organs inaccessible to platelets. This review highlights the importance of platelet-derived EVs in physiological and pathological conditions beyond hemostasis.


Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3758-3779 ◽  
Author(s):  
N Uchida ◽  
HL Aguila ◽  
WH Fleming ◽  
L Jerabek ◽  
IL Weissman

Abstract Hematopoietic stem cells (HSCs) are believed to play a critical role in the sustained repopulation of all blood cells after bone marrow transplantation (BMT). However, understanding the role of HSCs versus other hematopoietic cells in the quantitative reconstitution of various blood cell types has awaited methods to isolate HSCs. A candidate population of mouse HSCs, Thy-1.1lo Lin-Sca-1+ cells, was isolated several years ago and, recently, this population has been shown to be the only population of BM cells that contains HSCs in C57BL/Ka-Thy-1.1 mice. As few as 100 of these cells can radioprotect 95% to 100% of irradiated mice, resulting long-term multilineage reconstitution. In this study, we examined the reconstitution potential of irradiated mice transplanted with purified Thy-1.1lo Lin-Sca-1+ BM cells. Donor-derived peripheral blood (PB) white blood cells were detected as early as day 9 or 10 when 100 to 1,000 Thy-1.1lo Lin-Sca-1+ cells were used, with minor dose-dependent differences. The reappearance of platelets by day 14 and thereafter was also seen at all HSC doses (100 to 1,000 cells), with a slight dose-dependence. All studied HSC doses also allowed RBC levels to recover, although at the 100 cell dose a delay in hematocrit recovery was observed at day 14. When irradiated mice were transplanted with 500 Thy-1.1lo Lin-Sca-1+ cells compared with 1 x 10(6) BM cells (the equivalent amount of cells that contain 500 Thy-1.1lo Lin-Sca-1+ cells as well as progenitor and mature cells), very little difference in the kinetics of recovery of PB, white blood cells, platelets, and hematocrit was observed. Surprisingly, even when 200 Thy1.1lo Lin-Sca- 1+ cells were mixed with 4 x 10(5) Sca-1- BM cells in a competitive repopulation assay, most of the early (days 11 and 14) PB myeloid cells were derived from the HSC genotype, indicating the superiority of the Thy-1.1lo Lin-Sca-1+ cells over Sca-1- cells even in the early phases of myeloid reconstitution. Within the Thy-1.1lo Lin-Sca-1+ population, the Rhodamine 123 (Rh123)hi subset dominates in PB myeloid reconstitution at 10 to 14 days, only to be overtaken by the Rh123lo subset at 3 weeks and thereafter. These findings indicate that HSCs can account for the early phase of hematopoietic recovery, as well as sustained hematopoiesis, and raise questions about the role of non-HSC BM populations in the setting of BMT.


2019 ◽  
Vol 127 (2) ◽  
pp. 645-653 ◽  
Author(s):  
Ivan J. Vechetti

Extracellular vesicles (EVs) were initially characterized as “garbage bags” with the purpose of removing unwanted material from cells. It is now becoming clear that EVs mediate intercellular communication between distant cells through a transfer of genetic material, a process important to the systemic adaptation in physiological and pathological conditions. Although speculative, it has been suggested that the majority of EVs that make it into the bloodstream would be coming from skeletal muscle, since it is one of the largest organs in the human body. Although it is well established that skeletal muscle secretes peptides (currently known as myokines) into the bloodstream, the notion that skeletal muscle releases EVs is in its infancy. Besides intercellular communication and systemic adaptation, EV release could represent the mechanism by which muscle adapts to certain stimuli. This review summarizes the current understanding of EV biology and biogenesis and current isolation methods and briefly discusses the possible role EVs have in regulating skeletal muscle mass.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3696
Author(s):  
Kevin Ho Wai Yim ◽  
Ala’a Al Hrout ◽  
Simone Borgoni ◽  
Richard Chahwan

Extracellular vesicles (EVs) are emerging as potent and intricate intercellular communication networks. From their first discovery almost forty years ago, several studies have bolstered our understanding of these nano-vesicular structures. EV subpopulations are now characterized by differences in size, surface markers, cargo, and biological effects. Studies have highlighted the importance of EVs in biology and intercellular communication, particularly during immune and tumor interactions. These responses can be equally mediated at the proteomic and epigenomic levels through surface markers or nucleic acid cargo signaling, respectively. Following the exponential growth of EV studies in recent years, we herein synthesize new aspects of the emerging immune–tumor EV-based intercellular communications. We also discuss the potential role of EVs in fundamental immunological processes under physiological conditions, viral infections, and tumorigenic conditions. Finally, we provide insights on the future prospects of immune–tumor EVs and suggest potential avenues for the use of EVs in diagnostics and therapeutics.


Sign in / Sign up

Export Citation Format

Share Document