scholarly journals Extracellular Vesicles Orchestrate Immune and Tumor Interaction Networks

Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3696
Author(s):  
Kevin Ho Wai Yim ◽  
Ala’a Al Hrout ◽  
Simone Borgoni ◽  
Richard Chahwan

Extracellular vesicles (EVs) are emerging as potent and intricate intercellular communication networks. From their first discovery almost forty years ago, several studies have bolstered our understanding of these nano-vesicular structures. EV subpopulations are now characterized by differences in size, surface markers, cargo, and biological effects. Studies have highlighted the importance of EVs in biology and intercellular communication, particularly during immune and tumor interactions. These responses can be equally mediated at the proteomic and epigenomic levels through surface markers or nucleic acid cargo signaling, respectively. Following the exponential growth of EV studies in recent years, we herein synthesize new aspects of the emerging immune–tumor EV-based intercellular communications. We also discuss the potential role of EVs in fundamental immunological processes under physiological conditions, viral infections, and tumorigenic conditions. Finally, we provide insights on the future prospects of immune–tumor EVs and suggest potential avenues for the use of EVs in diagnostics and therapeutics.

2013 ◽  
Vol 41 (1) ◽  
pp. 273-276 ◽  
Author(s):  
Katrin J. Svensson ◽  
Mattias Belting

Over the last few decades, extensive studies by several groups have introduced the concept of cell-derived secreted extracellular membrane vesicles as carriers of complex molecular information. Owing to their pleiotropic biological effects and involvement in a wide variety of biological processes, extracellular membrane vesicles have been implicated in physiological as well as pathological events, including tumour development and metastasis. In the present review, we discuss the role of secreted membrane vesicles in intercellular communication with a focus on tumour biology. Of particular interest is the potential role of extracellular vesicles as orchestrators of common features of the malignant tumour microenvironment, e.g. coagulation activation and angiogenesis.


2021 ◽  
pp. 030098582199932
Author(s):  
Laura Bongiovanni ◽  
Anneloes Andriessen ◽  
Marca H. M. Wauben ◽  
Esther N. M. Nolte-’t Hoen ◽  
Alain de Bruin

With a size range from 30 to 1000 nm, extracellular vesicles (EVs) are one of the smallest cell components able to transport biologically active molecules. They mediate intercellular communications and play a fundamental role in the maintenance of tissue homeostasis and pathogenesis in several types of diseases. In particular, EVs actively contribute to cancer initiation and progression, and there is emerging understanding of their role in creation of the metastatic niche. This fact underlies the recent exponential growth in EV research, which has improved our understanding of their specific roles in disease and their potential applications in diagnosis and therapy. EVs and their biomolecular cargo reflect the state of the diseased donor cells, and can be detected in body fluids and exploited as biomarkers in cancer and other diseases. Relatively few studies have been published on EVs in the veterinary field. This review provides an overview of the features and biology of EVs as well as recent developments in EV research including techniques for isolation and analysis, and will address the way in which the EVs released by diseased tissues can be studied and exploited in the field of veterinary pathology. Uniquely, this review emphasizes the important contribution that pathologists can make to the field of EV research: pathologists can help EV scientists in studying and confirming the role of EVs and their molecular cargo in diseased tissues and as biomarkers in liquid biopsies.


2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Mariam Murtadha ◽  
Muller Fabbri

AbstractMicroRNAs (miRs) are small non-coding RNAs with key gene regulatory functions. Recent evidence has shown that miRs have a central role in shaping the biology of the Tumor Microenvironment (TME). The discovery that some exosomes contain high levels of miR cargo that shuttle between cells and mediate intercellular cross-talk has shifted the focus of miR research towards understanding the biological role of exosomic miRs. In this review, we highlight the emerging role of exosomic miRs in molding the tumor microenvironment towards pro-tumor conditions by altering intercellular communication. We briefly discuss some mechanisms of selective loading of miRs into exosomes, as well as emerging evidence that exosomic miRs are present in all biological fluids. Furthermore, we describe the differences in the exosomic miR signatures between cancer patients and healthy controls, and the potential role of exosomic miRs as diagnostic, prognostic, and therapeutic biomarkers.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2034
Author(s):  
Zubair Ahmed Ratan ◽  
Fazla Rabbi Mashrur ◽  
Anisha Parsub Chhoan ◽  
Sadi Md. Shahriar ◽  
Mohammad Faisal Haidere ◽  
...  

Since the early 1990s, nanotechnology has led to new horizons in nanomedicine, which encompasses all spheres of science including chemistry, material science, biology, and biotechnology. Emerging viral infections are creating severe hazards to public health worldwide, recently, COVID-19 has caused mass human casualties with significant economic impacts. Interestingly, silver nanoparticles (AgNPs) exhibited the potential to destroy viruses, bacteria, and fungi using various methods. However, developing safe and effective antiviral drugs is challenging, as viruses use host cells for replication. Designing drugs that do not harm host cells while targeting viruses is complicated. In recent years, the impact of AgNPs on viruses has been evaluated. Here, we discuss the potential role of silver nanoparticles as antiviral agents. In this review, we focus on the properties of AgNPs such as their characterization methods, antiviral activity, mechanisms, applications, and toxicity.


2022 ◽  
Vol 15 (1) ◽  
pp. 101247
Author(s):  
Jane Howard ◽  
Chia Yin Goh ◽  
Karolina Weiner Gorzel ◽  
Michaela Higgins ◽  
Amanda McCann

1994 ◽  
Vol 1 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Reed P. Warren ◽  
Robert W. Sidwell

2021 ◽  
Author(s):  
Sara B. York ◽  
Li Sun ◽  
Allaura S. Cone ◽  
Leanne C. Duke ◽  
Mujeeb R. Cheerathodi ◽  
...  

ABSTRACTExtracellular vesicles (EVs) are membrane-encapsulated structures released by cells which carry signaling factors, proteins and microRNAs that mediate intercellular communication. Accumulating evidence supports an important role of EVs in the progression of neurological conditions and both the spread and pathogenesis of infectious diseases. It has recently been demonstrated that EVs from Hepatitis C virus (HCV) infected individuals and cells contained replicative-competent viral RNA that was capable of infecting hepatocytes. Being a member of the same viral family, it is likely the Zika virus also hijacks EV pathways to package viral components and secrete vesicles that are infectious and potentially less immunogenic. As EVs have been shown to cross blood-brain and placental barriers, it is possible that Zika virus could usurp normal EV biology to gain access to the brain or developing fetus. Here, we demonstrate that Zika virus infected cells secrete distinct EV sub-populations with specific viral protein profiles and infectious genomes. Zika virus infection resulted in the enhanced production of EVs with varying sizes and density compared to those released from non-infected cells. We also show that the EV enriched tetraspanin CD63 regulates the release of EVs, and Zika viral genomes and capsids following infection. Overall, these findings provide evidence for an alternative means of Zika virus transmission and demonstrate the role of EV biogenesis and trafficking proteins in the modulation of Zika infection.ImportanceZika virus is a re-emerging infectious disease that spread rapidly across the Caribbean and South America. Infection of pregnant women during the first trimester has been linked to microcephaly, a neurological condition where babies are born with smaller heads due to abnormal brain development. Babies born with microcephaly can develop convulsions and suffer disabilities as they age. Despite the significance of Zika virus, little is known about how the virus infects the fetus or causes disease. Extracellular vesicles (EVs) are membrane-encapsulated structures released by cells that are present in all biological fluids. EVs carry signaling factors, proteins and microRNAs that mediate intercellular communication. EVs have been shown to be a means by which some viruses can alter cellular environments and cross previously unpassable cellular barriers. Thus gaining a greater understanding of how Zika affects EV cargo may aid in the development of better diagnostics, targeted therapeutics and prophylactic treatments.


2021 ◽  
Author(s):  
Zahra Heydarifard ◽  
Sevrin Zadheidar ◽  
Jila Yavarian ◽  
Somayeh Shatizadeh Malekshahi ◽  
Shirin Kalantari ◽  
...  

2021 ◽  
Vol 19 ◽  
Author(s):  
Ayaz M. Belkozhayev ◽  
Minnatallah Al-Yozbaki ◽  
Alex George ◽  
Raigul Ye Niyazova ◽  
Kamalidin O. Sharipov ◽  
...  

There are different modalities of intercellular communication governed by cellular homeostasis. In this review, we will explore one of these forms of communication called extracellular vesicles (EVs). These vesicles are released by all cells in the body and are heterogeneous in nature. The primary function of EVs is to share information through their cargo consisting of proteins, lipids and nucleic acids (mRNA, miRNA, dsDNA etc.) with other cells, which have a direct consequence on their microenvironment. We will focus on the role of EVs of mesenchymal stem cells (MSCs) in the nervous system and how these participate in intercellular communication to maintain physiological function and provide neuroprotection. However, deregulation of this same communication system could play a role in several neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis, multiple sclerosis, prion disease and Huntington’s disease. The release of EVs from a cell provides crucial information to what is happening inside the cell and thus could be used in diagnostics and therapy. We will discuss and explore new avenues for the clinical applications of using engineered MSC-EVs and their potential therapeutic benefit in treating neurodegenerative diseases.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 1044 ◽  
Author(s):  
Michael Groot ◽  
Heedoo Lee

Extracellular vesicles (EV) are secretory membranous elements used by cells to transport proteins, lipids, mRNAs, and microRNAs (miRNAs). While their existence has been known for many years, only recently has research begun to identify their function in intercellular communication and gene regulation. Importantly, cells have the ability to selectively sort miRNA into EVs for secretion to nearby or distant targets. These mechanisms broadly include RNA-binding proteins such as hnRNPA2B1 and Argonaute-2, but also membranous proteins involved in EV biogenesis such as Caveolin-1 and Neural Sphingomyelinase 2. Moreover, certain disease states have also identified dysregulated EV-miRNA content, shedding light on the potential role of selective sorting in pathogenesis. These pathologies include chronic lung disease, immune response, neuroinflammation, diabetes mellitus, cancer, and heart disease. In this review, we will overview the mechanisms whereby cells selectively sort miRNA into EVs and also outline disease states where EV-miRNAs become dysregulated.


Sign in / Sign up

Export Citation Format

Share Document