scholarly journals REMOTE SENSING ALLOWS TO ESTIMATE WATER STRESS AND YIELD LOSSES OF BEAN CULTIVARS

Irriga ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 1-12
Author(s):  
Daniel Soares Alves ◽  
Pablo Ricardo Nitsche ◽  
Vania Moda Cirino ◽  
Maria Brigida dos Santos Scholz ◽  
José dos Santos Neto ◽  
...  

REMOTE SENSING ALLOWS TO ESTIMATE WATER STRESS AND YIELD LOSSES OF BEAN CULTIVARS     DANIEL SOARES ALVES1; PABLO RICARDO NITSCHE1; VANIA MODA CIRINO2; MARIA BRIGIDA DOS SANTOS SCHOLZ1; JOSÉ DOS SANTOS NETO2 E PAULO HENRIQUE CARAMORI1   1 Área de Agrometeorologia, Ecofisiologia e Tecnologia de Alimentos, Instituto de Desenvolvimento Rural do Paraná IAPAR – EMATER, Rod. Celso Garcia Cid, 375, Conjunto Ernani Moura Lima II, 86.047 – 902, Londrina, Paraná, Brasil. [email protected]; [email protected]; [email protected]; [email protected] 2 Área de Melhoramento e Propagação Vegetal, Instituto de Desenvolvimento Rural do Paraná IAPAR – EMATER, Rod. Celso Garcia Cid, 375, Conjunto Ernani Moura Lima II, 86.047 – 902, Londrina, Paraná, Brasil.  [email protected] ; [email protected]     1 ABSTRACT   Reflectance measurements can indicate the physiological quality of plants and contribute to the correct differentiation of cultivars. Here, we studied the spectral responses at wavelengths of 410–810 nm of four common bean (Phaseolus vulgaris) cultivars subjected to water stress in the flowering stage at the Rural Development Institute of Paraná in Londrina, in the state of Paraná, Brazil. The reflectance values presented differences among the water regimes treatments at the wavelengths studied. For plants without water stress, it was possible to distinguish between IPR Andorinha and IPR Colibri cultivars using wavelengths of 460 and 760 nm, respectively. With a wavelength of 810 nm, there was a differentiation among IPR Andorinha (reflectance of 25.13%), IAC Imperador (23.51%), and IPR Colibri (21.92%) cultivars; however, the latter was not significantly different from the IPR Curió (22.26%) cultivar. The highest correlations with yield (R2 > 0.90) occurred at wavelengths of 460, 510, 560, 610, and 710 nm. The water treatments increased the protein content only for IPR Andorinha cultivars. It is concluded that the spectral response correlates with productivity and makes it possible to identify the water status of bean cultivars. This demonstrates that remote sensing techniques can be used to identify water stress in this crop.   Keywords: irrigation, Phaseolus vulgaris, reflectance, drought.     ALVES, D. S.; NITSCHE, P. R.; CIRINO, V. M; SCHOLZ, M. B. S; NETO, J. D. S; CARAMORI, P. H. SENSORIAMENTO REMOTO PERMITE ESTIMAR O DÉFICIT HÍDRICO E PERDAS DE RENDIMENTO EM CULTIVARES DE FEIJÃO     2 RESUMO   Medidas de reflectância podem indicar a qualidade fisiológica das plantas e contribuir para a correta diferenciação de cultivares. Estudou-se a resposta espectral, nos comprimentos de onda (λ) de 410 a 810 nm, em quatro cultivares de feijão (Phaseolus vulgaris) submetidas ao déficit hídrico no florescimento, no Instituto de Desenvolvimento Rural do Paraná, em Londrina – PR. A reflectância foi distinta entre os regimes hídricos em todos os comprimentos de onda (λ). Nos tratamentos sem déficit hídrico foi possível diferenciar as cultivares IPR Andorinha e IPR Colibri com λ de 460 nm e 760 nm, respectivamente. Com λ de 810 nm, houve diferenciação entre as cultivares IPR Andorinha (reflectância de 25,13%), IAC Imperador (23,51%) e IPR Colibri (21,92%), esta última sem diferença significativa com a cultivar IPR Curió (22,26%). As maiores correlações com a produtividade (R2 > 0,90) ocorreram com λ de 460, 510, 560, 610 e 710nm. Os tratamentos hídricos promoveram aumento no teor de proteína apenas para a cultivar IPR Andorinha. Conclui-se que a resposta espectral se correlaciona com a produtividade e possibilita identificar o status hídrico de cultivares de feijão. Isto permite o uso das técnicas de sensoriamento remoto como ferramenta auxiliar na identificação de estresse hídrico na cultura.   Palavras-chave: irrigação, Phaseolus vulgaris, reflectância, seca.

Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 336
Author(s):  
Lidia Aparicio-Durán ◽  
Frederick G. Gmitter ◽  
Juan M. Arjona-López ◽  
Rocío Calero-Velázquez ◽  
Áurea Hervalejo ◽  
...  

Drought and flooding conditions are increasingly common abiotic factors that affect citrus crops in both the Mediterranean Basin and Florida. Furthermore, emerging diseases, such as Huanglongbing (HLB), are a potential risk for these crops in those producing areas. This study aimed to evaluate the behavior under water-stress treatments of three new citrus rootstocks (UFR-6, B11R5T60, and 2247 x 6070-02-2) with reported tolerance of HLB, comparing them with a common commercial citrus rootstock (Carrizo citrange). Four water conditions were established: Control, Medium Water Stress (MWS), Drought, and Flooding. Chlorophyll index (SPAD), growth in height, relative growth rate, biomass (fresh and dry weight) and plant water status were evaluated. Citru rootstock response were different for each genotype; Carrizo citrange was negatively affected by all water treatments in the chlorophyll index (SPAD) and biomass production. By contrast, UFR-6 showed a positive response in SPAD and growth under MWS and Drought, B11R5T60 displayed similar behavior to Control under all water stresses, and the response of 2247 x 6070-02-2 under MWS treatment was adequate but was not under Drought or Flooding conditions. Our study describes the behavior of these promising new citrus rootstocks against water stress; B11R5T60 exhibiting the best performance. These results can be useful for the citrus industry to address water-stress problems in these crops.


Author(s):  
Élvis da S. Alves ◽  
Roberto Filgueiras ◽  
Lineu N. Rodrigues ◽  
Fernando F. da Cunha ◽  
Catariny C. Aleman

ABSTRACT In regions where the irrigated area is increasing and water availability is reduced, such as the West of the Bahia state, Brazil, the use of techniques that contribute to improving water use efficiency is paramount. One of the ways to improve irrigation is by improving the calculation of actual evapotranspiration (ETa), which among other factors is influenced by soil drying, so it is important to understand this relationship, which is usually accounted for in irrigation management models through the water stress coefficient (Ks). This study aimed to estimate the water stress coefficient (Ks) through information obtained via remote sensing, combined with field data. For this, a study was carried out in the municipality of São Desidério, an area located in western Bahia, using images of the Landsat-8 satellite. Ks was calculated by the relationship between crop evapotranspiration and ETa, calculated by the Simple Algorithm for Evapotranspiration Retrieving (SAFER). The Ks estimated by remote sensing showed, for the development and medium stages, average errors on the order of 5.50%. In the final stage of maize development, the errors obtained were of 23.2%.


Author(s):  
Rosiany Maria da Silva ◽  
Alessandro Santos da Rocha ◽  
José Ozinaldo Alves de Sena ◽  
Marivânia Conceição de Araújo ◽  
Eronildo José da Silva ◽  
...  

Author(s):  
Lokesh Kumar Jain

Remote sensing technologies offer the potential for contributing the security to human existence on arid zones in the country in variety of ways. Remote Sensing in agriculture particularly for natural resource management. It provides important coverage, mapping and classification of land cover features. The remote view of the sensor and the ability to store, analyze, and display the sensed data on field maps are make remote sensing a potentially important tool for agriculture. The aerial photography gives two main advantages viz., speedy survey in very large area or remote area and precise description and recording of resources status. Remotely sensed images provide a means to assess field conditions and gave valuable insights into agronomic management. It led to understanding of leaf reflectance and leaf emittance changes in response to leaf thickness, species, canopy shape, leaf age, nutrient status, and water status. Understanding of leaf reflectance has led to quantify various agronomic parameters, e.g., leaf area, crop cover, biomass, crop type, nutrient status, and yield.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 874 ◽  
Author(s):  
Javier J. Cancela ◽  
Xesús P. González ◽  
Mar Vilanova ◽  
José M. Mirás-Avalos

This document intends to be a presentation of the Special Issue “Water Management Using Drones and Satellites in Agriculture”. The objective of this Special Issue is to provide an overview of recent advances in the methodology of using remote sensing techniques for managing water in agricultural systems. Its eight peer-reviewed articles focus on three topics: new equipment for characterizing water bodies, development of satellite-based technologies for determining crop water requirements in order to enhance irrigation efficiency, and monitoring crop water status through proximal and remote sensing. Overall, these contributions explore new solutions for improving irrigation management and an efficient assessment of crop water needs, being of great value for both researchers and advisors.


2015 ◽  
Vol 3 (2) ◽  
pp. 58-67 ◽  
Author(s):  
Jan Rudolf Karl Lehmann ◽  
Keturah Zoe Smithson ◽  
Torsten Prinz

Remote sensing techniques have become an increasingly important tool for surveying archaeological sites. However, budgeting issues in archaeological research often limit the application of satellite or airborne imagery. Unmanned aerial systems (UAS) provide a flexible, quick, and more economical alternative to commonly used remote sensing techniques. In this study, the buried features of the archaeological site of the Kleinburlo monastery, near Münster, Germany, were identified using high-resolution color–infrared (CIR) images collected from a UAS platform. Based on these CIR images, a modified normalised difference vegetation index (NDVIblue) was calculated, showing reflectance spectra of vegetation anomalies caused by water stress. In the presented study, the vegetation growing on top of the buried walls was better nourished than the surrounding plants because very wet conditions over the days previous to data collection caused higher levels of water stress in the surrounding water-drenched land. This difference in water stress was a good indicator for detecting archaeological remains.


2020 ◽  
Author(s):  
Elisabet Carpintero ◽  
Ana Andreu ◽  
Pedro J. Gómez-Giráldez ◽  
María P. González-Dugo

<p>In water-controlled systems, the evapotranspiration (ET) is a key indicator of the ecosystem health and the water status of the vegetation. Continuous monitoring of this variable over Mediterranean savannas (landscape consisting of widely-spaced oak trees combined with pasture, crops and shrubs) provides the baseline required to evaluate actual threats (e.g. vulnerable areas, land-use changes, invasive species, over-grazing, bush encroachment, etc.) and design management actions leading to reduce the economic and environmental vulnerability. However, the patched nature of these agropastoral ecosystems, with different uses (agricultural, farming, hunting), and their complex canopy structure, with various layers of vegetation and bare soil, pose additional difficulties. The combination of satellite mission with high/medium spatial/temporal resolutions provides appropriate information to characterize the variability of the Mediterranean savanna, assessing resource availability at local scales.</p><p>The aim of this work is to quantify ET and water stress at field-scale over a dehesa ecosystem located in Southern Spain, coupling remote sensing-based water and energy balance models. A soil water balance has been applied for five consecutive hydrological years (between 2012 and 2017) using the vegetation index (VI) based approach (VI-ETo model), on a daily scale and 30 m of spatial resolution. It combines FAO56 guidelines with the spectral response in the visible and near-infrared regions to compute more accurately the canopy transpiration. Landsat-8 and Sentinel-2 images, meteorological, and soil data have been used. This approach has been adapted to dehesa ecosystem, taking into account the double strata of annual grasses and tree canopies. However, the lack of available information about the spatial distribution of soil properties and the presence of multiple vegetation layers with very different root depths increase the uncertainty of water balance calculations. The combination with energy balance-based models may overcome these issues. In this case, the two-source energy balance model (TSEB) has been applied to explore the possibilities of integrating both approaches.  ET was estimated using TSEB in the days with available thermal data, more accurately assessing the reduction on ET due to soil water deficit, and allowing the adjustment of water stress coefficient in the VI-ETo model.</p><p>The modeled ET results have been validated with field observations (Santa Clotilde; 38º12’N, 4º17’ W; 736 m a.s.l.), measuring the energy balance components with an eddy covariance system and complementary instruments. The VI-ETo model has proven to be robust to monitor the vegetation water use of this complex ecosystem. However, the integration of the energy balance modelling has improved the estimations during the dry periods, with highly stressed vegetation, enabling a continuous monitoring of ET and water stress over this landscape.</p>


OENO One ◽  
2017 ◽  
Vol 51 (1) ◽  
Author(s):  
Vivian Zufferey ◽  
Jean-Laurent Spring ◽  
Thibaut Verdenal ◽  
Agnès Dienes ◽  
Sandrine Belcher ◽  
...  

<p><strong>Aims : </strong>The aims of this study were to investigate the physiological behavior (plant hydraulics, gas exchange) of the cultivar Pinot Noir in the field under progressively increasing conditions of water stress and analyze the effects of drought on grape and wine quality.</p><p><strong>Methods and results : </strong>Grapevines of the variety <em>Vitis vinifera</em> L. cv. Pinot Noir (clone 9-18, grafted onto 5BB) were subjected to different water regimes (irrigation treatments) over the growing season. Physiological indicators were used to monitor plant water status (leaf and stem water potentials and relative carbon isotope composition (d<sup>13</sup>C) in must sugars). Leaf gas exchange (net photosynthesis A and transpiration E), leaf stomatal conductance (gs), specific hydraulic conductivity in petioles (K<sub>petiole</sub>), yield components, berry composition at harvest, and organoleptic quality of wines were analyzed over a 7-year period, between 2009 and 2015, under relatively dry conditions in the canton of Wallis, Switzerland. A progressively increasing water deficit, observed throughout the season, reduced the leaf gas exchange (A and E) and gs in non-irrigated vines. The intrinsic water use efficiency (WUE<sub>i</sub>, A/gs) increased during the growing season and was greater in water-stressed vines than in well-watered vines (irrigated vines). This rise in WUE<sub>i</sub> was correlated with an increase in d<sup>13</sup>C in must sugars at harvest. Drought led to decreases in K<sub>petiole</sub>, E and sap flow in stems. A decrease in vine plant vigor was observed in vines that had been subjected to water deficits year after year. Moderate water stress during ripening favored sugar accumulation in berries and caused a reduction in total acidic and malic contents in must and available nitrogen content (YAN). Wines produced from water-stressed vines had a deeper color and were richer in anthocyanins and phenol compounds compared with wines from well-watered vines with no water stress. The vine water status greatly influenced the organoleptic quality of the resulting wines. Wines made from non-irrigated vines with a water deficit presented more structure and higher-quality tannins. They were also judged to be more full-bodied and with blended tannins than those made from irrigated vines.</p><p><strong>Conclusions : </strong>Grape ripening and resulting Pinot Noir wines were found to be largely dependent on the water supply conditions of the vines during the growing season, which influenced gas exchange and plant hydraulics.</p><p><strong>Significance and impact of the study : </strong>Plant water status constitutes a key factor in leaf gas exchange, canopy water use efficiency, berry composition and wine quality.</p>


2015 ◽  
Vol 19 (11) ◽  
pp. 4653-4672 ◽  
Author(s):  
G. Boulet ◽  
B. Mougenot ◽  
J.-P. Lhomme ◽  
P. Fanise ◽  
Z. Lili-Chabaane ◽  
...  

Abstract. Evapotranspiration is an important component of the water cycle, especially in semi-arid lands. A way to quantify the spatial distribution of evapotranspiration and water stress from remote-sensing data is to exploit the available surface temperature as a signature of the surface energy balance. Remotely sensed energy balance models enable one to estimate stress levels and, in turn, the water status of continental surfaces. Dual-source models are particularly useful since they allow derivation of a rough estimate of the water stress of the vegetation instead of that of a soil–vegetation composite. They either assume that the soil and the vegetation interact almost independently with the atmosphere (patch approach corresponding to a parallel resistance scheme) or are tightly coupled (layer approach corresponding to a series resistance scheme). The water status of both sources is solved simultaneously from a single surface temperature observation based on a realistic underlying assumption which states that, in most cases, the vegetation is unstressed, and that if the vegetation is stressed, evaporation is negligible. In the latter case, if the vegetation stress is not properly accounted for, the resulting evaporation will decrease to unrealistic levels (negative fluxes) in order to maintain the same total surface temperature. This work assesses the retrieval performances of total and component evapotranspiration as well as surface and plant water stress levels by (1) proposing a new dual-source model named Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE) in two versions (parallel and series resistance networks) based on the TSEB (Two-Source Energy Balance model, Norman et al., 1995) model rationale as well as state-of-the-art formulations of turbulent and radiative exchange, (2) challenging the limits of the underlying hypothesis for those two versions through a synthetic retrieval test and (3) testing the water stress retrievals (vegetation water stress and moisture-limited soil evaporation) against in situ data over contrasted test sites (irrigated and rainfed wheat). We demonstrated with those two data sets that the SPARSE series model is more robust to component stress retrieval for this cover type, that its performance increases by using bounding relationships based on potential conditions (root mean square error lowered by up to 11 W m−2 from values of the order of 50–80 W m−2), and that soil evaporation retrieval is generally consistent with an independent estimate from observed soil moisture evolution.


Sign in / Sign up

Export Citation Format

Share Document