scholarly journals Different Root Morphological Responses to Phosphorus Supplies in Grafted Pepper

Author(s):  
Leandro PEREIRA-DIAS ◽  
Lidia LOPEZ-SERRANO ◽  
Vicente CASTELL-ZEISING ◽  
Salvador LOPEZ-GALARZA ◽  
Alberto SAN BAUTISTA ◽  
...  

Grafting technique is increasing thanks to its potential to produce plants more efficient and tolerant to biotic and abiotic stresses. Likewise, there is a growing interest in reducing inputs of fertilizers. The development of rootstocks suitable for low input agriculture is conditioned to the understanding of the changes on the root when facing such stresses. Our aim was to evaluate the morphological root response to Phosphorus (P) starvation of a rootstock selected for its good performance under low P conditions. Adige was grafted onto the selected rootstock and grown hydroponically in two different P concentrations, the selft-graft was done as control. Plants were then collected and analysed. Results showed that despite the differences in terms of P concentration among treatment the stress was not enough to cause a great biomass loss. However, there is evidence that individuals showed different root adaptations, modifiying root length, mass and volume, etc, under stress conditions, having the selected rootstock higher root length and volume under low P nutrient solution

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Fangwei Yu ◽  
Shenyun Wang ◽  
Wei Zhang ◽  
Hong Wang ◽  
Li Yu ◽  
...  

Abstract The members of myeloblastosis transcription factor (MYB TF) family are involved in the regulation of biotic and abiotic stresses in plants. However, the role of MYB TF in phosphorus remobilization remains largely unexplored. In the present study, we show that an R2R3 type MYB transcription factor, MYB103, is involved in phosphorus (P) remobilization. MYB103 was remarkably induced by P deficiency in cabbage (Brassica oleracea var. capitata L.). As cabbage lacks the proper mutant for elucidating the mechanism of MYB103 in P deficiency, another member of the crucifer family, Arabidopsis thaliana was chosen for further study. The transcript of its homologue AtMYB103 was also elevated in response to P deficiency in A. thaliana, while disruption of AtMYB103 (myb103) exhibited increased sensitivity to P deficiency, accompanied with decreased tissue biomass and soluble P concentration. Furthermore, AtMYB103 was involved in the P reutilization from cell wall, as less P was released from the cell wall in myb103 than in wildtype, coinciding with the reduction of ethylene production. Taken together, our results uncover an important role of MYB103 in the P remobilization, presumably through ethylene signaling.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5873 ◽  
Author(s):  
Qibin Wu ◽  
Shiwu Gao ◽  
Yong-Bao Pan ◽  
Yachun Su ◽  
Michael P. Grisham ◽  
...  

Glyoxalase I belongs to the glyoxalase system that detoxifies methylglyoxal (MG), a cytotoxic by-product produced mainly from triose phosphates. The concentration of MG increases rapidly under stress conditions. In this study, a novel glyoxalase I gene, designated as SoGloI was identified from sugarcane. SoGloI had a size of 1,091 bp with one open reading frame (ORF) of 885 bp encoding a protein of 294 amino acids. SoGloI was predicted as a Ni2+-dependent GLOI protein with two typical glyoxalase domains at positions 28–149 and 159–283, respectively. SoGloI was cloned into an expression plasmid vector, and the Trx-His-S-tag SoGloI protein produced in Escherichia coli was about 51 kDa. The recombinant E. coli cells expressing SoGloI compared to the control grew faster and tolerated higher concentrations of NaCl, CuCl2, CdCl2, or ZnSO4. SoGloI ubiquitously expressed in various sugarcane tissues. The expression was up-regulated under the treatments of NaCl, CuCl2, CdCl2, ZnSO4 and abscisic acid (ABA), or under simulated biotic stress conditions upon exposure to salicylic acid (SA) and methyl jasmonate (MeJA). SoGloI activity steadily increased when sugarcane was subjected to NaCl, CuCl2, CdCl2, or ZnSO4 treatments. Sub-cellular observations indicated that the SoGloI protein was located in both cytosol and nucleus. These results suggest that the SoGloI gene may play an important role in sugarcane’s response to various biotic and abiotic stresses.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 602
Author(s):  
Julia Medrano Macías ◽  
María Guadalupe López Caltzontzit ◽  
Erika Nohemi Rivas Martínez ◽  
Willian Alfredo Narváez Ortiz ◽  
Adalberto Benavides Mendoza ◽  
...  

Iodine is a non-essential element for land plants, but is considered as a beneficial element, related to antioxidant capacity, environmental adaptations and improvement of plant growth. Salinity is one of the more recurrent abiotic stresses worldwide, seriously affecting vegetal production. The aim of this work was to evaluate iodine application (Q products® and KIO3, Quimcasa de México, Naucalpan, Mexico) in strawberry plants under normal and salt stress conditions. Growth, antioxidant content, essential minerals, iodine accumulation and fruit quality were evaluated. The results showed that, under stress conditions, the application of Q products increased ascorbate peroxidase (APX) and catalase (CAT) activity as well as glutathione (GSH) content and yield in fruit, without avoiding biomass loss; with the application of KIO3 an increase in GSH and APX activity as well as P and K concentrations were obtained. In leaves an increase in P, Ca, Mn and iodine accumulation was evidenced with the application of Q products, and an increased concentration of ascorbic acid and iodine with KIO3 treatments. Under normal conditions in fruits, the application of Q products increased phenolic compounds synthesis; additionally, an increase in Ca and Mn concentrations was shown. KIO3 application increased the firmness and Mn. In leaves, the application of Q products increased chlorophyll a, b and calcium. In conclusion, the application of iodine improves the quality value of strawberries under normal conditions and provides an enhancement of salt stress tolerance.


2021 ◽  
Author(s):  
Fabricio Almeida-Silva ◽  
Thiago M. Venancio

Plant pathogenesis-related (PR) proteins are a large group of proteins, classified in 17 families, that are induced by pathological conditions. Here, we characterized the soybean PR-1 (GmPR-1) gene repertoire at the sequence, structural and expression levels. We found 24 GmPR-1 genes, clustered in two phylogenetic groups. GmPR-1 genes are under strong purifying selection, particularly those that emerged by tandem duplications. GmPR-1 promoter regions are abundant in cis-regulatory elements associated with major stress-related transcription factor families, namely WRKY, ERF, HD-Zip, C2H2, NAC, and GATA. We observed that 23 GmPR-1 genes are induced by stress conditions or exclusively expressed upon stress. We explored 1972 transcriptome samples, including 26 stress conditions, revealing that most GmPR-1 genes are differentially expressed in a plethora of biotic and abiotic stresses. Our findings highlight stress-responsive GmPR-1 genes with potential biotechnological applications, such as the development of transgenic lines with increased resistance to biotic and abiotic stresses.


2015 ◽  
Vol 49 (6) ◽  
Author(s):  
Ashok Kumar ◽  
R S Bal ◽  
Mandeep Singh

Wheat is the most important widely cultivated crops in the world. Its yield is greatly influenced by both biotic and abiotic stresses. Therefore, an evaluation of different species belonging to <italic>Triticum</italic> and <italic>Aegilops</italic> species for seedling traits was attempted. All the traits i.e. root length, shoot length and coleoptile length showed high heritability in broad sense and root length showed significantly positive correlation with coleoptile length under both moisture non- stress (E1) and moisture stress (E2) environments. All the traits showed a decreasing trend under moisture stress conditions in all the species and the reduction for all the traits were more pronounced in wild species than the cultivated species.


2021 ◽  
pp. 1-15
Author(s):  
Zengzhi Si ◽  
Yake Qiao ◽  
Kai Zhang ◽  
Zhixin Ji ◽  
Jinling Han

Sweetpotato, <i>Ipomoea batatas</i> (L.) Lam., is an important and widely grown crop, yet its production is affected severely by biotic and abiotic stresses. The nucleotide binding site (NBS)-encoding genes have been shown to improve stress tolerance in several plant species. However, the characterization of NBS-encoding genes in sweetpotato is not well-documented to date. In this study, a comprehensive analysis of NBS-encoding genes has been conducted on this species by using bioinformatics and molecular biology methods. A total of 315 NBS-encoding genes were identified, and 260 of them contained all essential conserved domains while 55 genes were truncated. Based on domain architectures, the 260 NBS-encoding genes were grouped into 6 distinct categories. Phylogenetic analysis grouped these genes into 3 classes: TIR, CC (I), and CC (II). Chromosome location analysis revealed that the distribution of NBS-encoding genes in chromosomes was uneven, with a number ranging from 1 to 34. Multiple stress-related regulatory elements were detected in the promoters, and the NBS-encoding genes’ expression profiles under biotic and abiotic stresses were obtained. According to the bioinformatics analysis, 9 genes were selected for RT-qPCR analysis. The results revealed that <i>IbNBS75</i>, <i>IbNBS219</i>, and <i>IbNBS256</i> respond to stem nematode infection; <i>Ib­NBS240</i>, <i>IbNBS90</i>, and <i>IbNBS80</i> respond to cold stress, while <i>IbNBS208</i>, <i>IbNBS71</i>, and <i>IbNBS159</i> respond to 30% PEG treatment. We hope these results will provide new insights into the evolution of NBS-encoding genes in the sweetpotato genome and contribute to the molecular breeding of sweetpotato in the future.


2021 ◽  
Vol 10 (1) ◽  
pp. 456-475
Author(s):  
Efat Zohra ◽  
Muhammad Ikram ◽  
Ahmad A. Omar ◽  
Mujahid Hussain ◽  
Seema Hassan Satti ◽  
...  

Abstract In the present era, due to the increasing incidence of environmental stresses worldwide, the developmental growth and production of agriculture crops may be restrained. Selenium nanoparticles (SeNPs) have precedence over other nanoparticles because of the significant role of selenium in activating the defense system of plants. In addition to beneficial microorganisms, the use of biogenic SeNPs is known as an environmentally friendly and ecologically biocompatible approach to enhance crop production by alleviating biotic and abiotic stresses. This review provides the latest development in the green synthesis of SeNPs by using the results of plant secondary metabolites in the biogenesis of nanoparticles of different shapes and sizes with unique morphologies. Unfortunately, green synthesized SeNPs failed to achieve significant attention in the agriculture sector. However, research studies were performed to explore the application potential of plant-based SeNPs in alleviating drought, salinity, heavy metal, heat stresses, and bacterial and fungal diseases in plants. This review also explains the mechanistic actions that the biogenic SeNPs acquire to alleviate biotic and abiotic stresses in plants. In this review article, the future research that needs to use plant-mediated SeNPs under the conditions of abiotic and biotic stresses are also highlighted.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 178
Author(s):  
Ana L. Villagómez-Aranda ◽  
Luis F. García-Ortega ◽  
Irineo Torres-Pacheco ◽  
Ramón G. Guevara-González

Epigenetic regulation is a key component of stress responses, acclimatization and adaptation processes in plants. DNA methylation is a stable mark plausible for the inheritance of epigenetic traits, such that it is a potential scheme for plant breeding. However, the effect of modulators of stress responses, as hydrogen peroxide (H2O2), in the methylome status has not been elucidated. A transgenic tobacco model to the CchGLP gene displayed high H2O2 endogen levels correlated with biotic and abiotic stresses resistance. The present study aimed to determine the DNA methylation status changes in the transgenic model to obtain more information about the molecular mechanism involved in resistance phenotypes. The Whole-genome bisulfite sequencing analysis revealed a minimal impact of overall levels and distribution of methylation. A total of 9432 differential methylated sites were identified in distinct genome regions, most of them in CHG context, with a trend to hypomethylation. Of these, 1117 sites corresponded to genes, from which 83 were also differentially expressed in the plants. Several genes were associated with respiration, energy, and calcium signaling. The data obtained highlighted the relevance of the H2O2 in the homeostasis of the system in stress conditions, affecting at methylation level and suggesting an association of the H2O2 in the physiological adaptation to stress functional linkages may be regulated in part by DNA methylation.


Sign in / Sign up

Export Citation Format

Share Document